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Chapter 1

Miscellaneous

1.1 Two-state Problem

All two-state quantum-mechanical problems can be mapped onto the Hamil-
tonian

H = ĥ · σ =
(

cos θ sin θe−iφ

sin θeiφ − cos θ

)
, (1.1)

with ĥ = (sin θ cos φ, sin θ sinφ, cos θ) denoting the spin orientation. This is
diagonalized by the unitary rotation U+HU with

U =
(

cos(θ/2) − sin(θ/2)
sin(θ/2)eiφ cos(θ/2)eiφ

)
(1.2)

implying that the two eigenstates are

|1〉 =
(

cos(θ/2)
sin(θ/2)eiφ

)
, E1 = +1

|2〉 =
( − sin(θ/2)

cos(θ/2)eiφ

)
, E1 = −1. (1.3)

1.2 d-orbitalogy

The five d-orbitals are classified using the spherical harmonics

Y22(θ, φ) = 3

√
5

96π
sin2 θe2iφ = |2〉

Y21(θ, φ) = −3

√
5

24π
sin θ cos θeiφ = |1〉

Y20(θ, φ) =

√
5
4π

(
3
2

cos2 θ − 1
2

)
= |0〉

Y21(θ, φ) = 3

√
5

24π
sin θ cos θe−iφ = |1〉

Y22(θ, φ) = 3

√
5

96π
sin2 θe−2iφ = |2〉. (1.4)
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6 CHAPTER 1. MISCELLANEOUS

Three t2g orbitals are

|xy〉 =
i√
2
(|2〉 − |2〉) ∼ sin2 θ sinφ cos φ ∼ xy,

|yz〉 =
i√
2
(|1〉+ |1〉) ∼ sin θ cos θ sinφ ∼ yz,

|zx〉 =
1√
2
(|1〉 − |1〉) ∼ sin θ cos θ cos φ ∼ zx. (1.5)

The two eg orbitals are

|x2 − y2〉 =
1√
2
(|2〉+ |2〉) ∼ sin2 θ(cos2 φ− sin2 φ) ∼ x2 − y2,

|3z2 − r2〉 = |0〉 ∼ 3z2 − r2. (1.6)

1.3 p-orbitalogy

The three p-orbitals are classified using the spherical harmonics

Y11(θ, φ) = −
√

3
8π

sin θeiφ = |1〉

Y10(θ, φ) =

√
3
4π

cos θ = |0〉

Y11(θ, φ) =

√
3
8π

sin θe−iφ = |1〉. (1.7)

x, y, z-orbitals are given by

|x〉 =
1√
2
(|1〉 − |1〉)

|y〉 =
i√
2
(|1〉+ |1〉)

|z〉 = |0〉. (1.8)



Chapter 2

Path Integral for Spins

2.1 Single spin

In the coherent state representation of spins, the spin state is expressed by a
spinor

|n〉 = z =
(

z1

z2

)
, z1 = e−iφ/2 cos

θ

2
, z2 = eiφ/2 sin

θ

2
. (2.1)

The angles are those of the classical spin vector n = (sin θ cos φ, sin θ sinφ, cos θ).
The path integral for spin contains the term

〈ṅ|n〉 = ż†z =
i

2
φ̇ cos θ. (2.2)

For an arbitrary spin length I there is a Berry phase contribution to the action
e−iSB with

SB = I

∫
d2rdt (1− cos θ) φ̇. (2.3)

The term
∫

dt(1 − cos θ)φ̇ gives the solid angle subtended by the unit vector
over time t. Equation of motion for spin follows from varying the Berry action

δSB

δn
= Iṅ× n. (2.4)

2.2 Antiferromagnetic spin chain

For a spin chain the Berry phase term is a collection of spin-spin Berry phase
action

SAF
1D =

∑

i

SB [ni] (2.5)
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8 CHAPTER 2. PATH INTEGRAL FOR SPINS

Owing to the staggered nature of spins we can write ni = (−1)iLi + Mi, as-
suming |Li| À |Mi|. We can expand the Berry action as

∑

i

SB [(−1)iLi + Mi] ≈
∑

i

SB [(−1)iLi] +
∑

i

Mi · δSB

δni

∣∣∣
ni=(−1)iLi

. (2.6)

When the spin direction is reversed, the sign of the Berry phase is also reversed,
SB [(−1)iLi] = (−1)iSB [Li]. We get

SAF
1D ≈

∑

i

(−1)iSB [Li] + I
∑

i

Mi · L̇i × Li. (2.7)

In the case of the one-dimensional chain one can manipulate the first term in
the Berry phase action a little more. For a chain of length N (N=even) the
first term can be re-arranged as

N/2∑

i=1

(SB [L2i]− SB [L2i−1]) ≈
N/2∑

i=1

δSB

δL
· (L2i − L2i−1) ≈ I

2

∑

i

L̇i × Li · ∂xLi.(2.8)

In the final expression all sites are included in the sum. The continuum limit of
the Berry phase action for 1D AF chain reads

SAF
1D ≈ I

2

∫
L · ∂xL× ∂tL + I

∫
M · L̇× L. (2.9)

What about the Heisenberg part? By using the same strategy one can re-
write the Heisenberg spin interaction as

H = J
∑

i

ni · ni+1 = J
∑

i

(
(−1)iLi + Mi

) (−(−1)iLi+1 + Mi+1

)

≈ J

2

∑

i

(Li+1 − Li)2 + J
∑

i

M2
i

→ J

2

∫ ∑
µ

(∂µL)2 + J

∫
M2. (2.10)



Chapter 3

1D Quantum Spin Chain

3.1 The model

The one-dimensional quantum S = 1/2 spin model on a periodic lattice of length
N is given by

H = J⊥
∑

n

Sn · Sn+1 + Jz

∑
n

Sz
nSz

n+1. (3.1)

3.2 Ferromagnetic case

Ground state: For Jz < 0 and |Jz|/J⊥ sufficiently large, the ground state is the
ferromagnetic one |F 〉 with all the spins up. Its energy H|F 〉 = (Jz/4)|F 〉 is
considered as zero.

3.3 Antiferromagnetic case

The general solution of Eq. (3.1) with J⊥ = Jz = J which is an eigenstate of
Sz =

∑
j Sz

j is

|ψ〉 =
∑

1≤n1<n2<···<nM≤N

φ(n1, n2, · · · , nM )|n1, n2, · · ·nM 〉,

|n1, n2, · · ·nM 〉 = S−n1
· S−nM

|F 〉. (3.2)

The ansatz solution that diagonalizes the isotropic spin Hamiltonian is

φ(n1, · · · , ·nM ) =
∑

P

AP exp


i

M∑

j=1

kP (j)nj


 . (3.3)

Here kP (j) spans all permutations of the set {k1, k2, · · · kM}, P ({k1, k2, · · · kM}) =
{kP (1), kP (2), · · · kP (M)}, and AP is a coefficient that depends on each permuta-
tion. The kj ’s are the pseudo-momenta for each of the M down spins, and the
total energy and momenta in terms of the pseudo-momenta is
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10 CHAPTER 3. 1D QUANTUM SPIN CHAIN

E = J
M∑

j=1

(cos kj − 1), P =
M∑

j=1

kj . (3.4)

The coefficients AP and the set of allowed pseudo-momenta {kj} can be
derived by substitution of Eq. (3.3) into Eq. (3.1). One can separate the
Hamiltonian as two pieces H = H⊥ + Hz where

H⊥ =
1
2
J

N∑
n=1

(S−n S+
n+1 + S+

n S−n+1)

Hz = J
∑

n

Sz
nSz

n+1. (3.5)

The action of H⊥ on |ψ〉 is

1
2
J

∑

{nj}
φ(n1, · · · , nM )

∑

{n′j}
|{n′j}〉. (3.6)

Here |{n′j}〉 refers to all set of configurations related to the original configuration
|{nj}〉 by the reversal of the nearest pair of up and down spins. For example,
if a given basis configuration is |3, 6〉 (spin down position at 3 and 6), the set
of |{n′j}〉 is |2, 6〉, |4, 6〉, |3, 5〉, |3, 1〉. The last configuration arises in the periodic
boundary condition geometry. The total number of configurations {n′j} arising
from {nj} equals the the total number of spin up-down pairs, or the number of
kinks. The action of Hz gives a numerical factor proportional to the number of
kinks,

Hz|{nj}〉 = −1
2
J × (number of kinks)|{nj}〉. (3.7)

The Schrodinger equation becomes (J = 2)

Eφ({n}) =
∑

{n′}
(φ({n′})− φ({n})) . (3.8)

One-spin down state: The one-spin down state, M = 1, has Eq. (3.8) reduced
to

φ(n + 1) + φ(n− 1)− 2φ(n) = Eφ(n). (3.9)

Ansatz c(n) = Aeikn solves the equation with the energy given by

Ek = 2(cos k − 1). (3.10)

Imposing the periodic boundary condition φ(n + N) = φ(n) quantizes the k
values

kj =
2π

N
Ij (3.11)

with the allowed quantum number Ij = 1, · · ·N .
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Two-spin down states: For M = 2, the case of n2 = n1 + 1 needs to be treated
separately from the others. If n2 = n1 + 1, EoM gives

Eφ(n1, n1 + 1) = −2φ(n1, n1 + 1) + φ(n1 − 1, n1 + 1) + φ(n1, n1 + 2). (3.12)

Otherwise EoM gives

Eφ(n1, n2) = −4φ(n1, n2)
+φ(n1 − 1, n2) + φ(n1 + 1, n2) + φ(n1, n2 − 1) + φ(n1, n2 + 1).

(3.13)

Suppose Eq. (3.13) can be analytically continued to n2 = n1 + 1. Then sub-
tracting out Eq. (3.12) from Eq. (3.13) for n1 = n, n2 = n + 1 would give

2φ(n, n + 1) = φ(n, n) + φ(n + 1, n + 1). (3.14)

One can try the solution

φ(n1, n2) = A1e
ik1n1+ik2n2 + A2e

ik2n1+ik1n2 . (3.15)

If Eq. (3.13) were valid everywhere, we would immediately conclude that Eq.
(3.15) is the solution with the energy

E = 2
2∑

j=1

(cos kj − 1). (3.16)

Substituting the ansatz, Eq. (3.15), into the constraint, Eq. (3.14), gives

−A1

A2
=

eik1+ik2 + 1− 2eik1

eik1+ik2 + 1− 2eik2
=

ei
k1−k2

2 − cos k1+k2
2

ei
k2−k1

2 − cos k1+k2
2

. (3.17)

The ratio |A1/A2| is one, hence one can write A1 = eiθ12/2 and A2 = eiθ21/2,
θ21 = −θ12, and show that θ12 in terms of k1, k2 is obtained from

cot
θ12

2
=

sin k1−k2
2

cos k1+k2
2 − cos k1−k2

2

. (3.18)

The two particle solution becomes

φ(n1, n2) = eiθ12/2+i(k1n1+k2n2) + e−iθ12/2+i(k2n1+k1n2). (3.19)

Imposing the periodic boundary condition becomes tricky for two particles
and beyond. We choose the condition that φ(n1, n2) = φ(n2, n1 + N), which
renders

eik1N = eiθ12 , eik2N = eiθ21 . (3.20)

The quantum numbers are quantized accordingly,

k1N = 2πI1 + θ12, k2 = 2πI2 + θ21, Ii = 1, · · · , N. (3.21)
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M-spin down state: We return to the general, M -spin down state with the
ansatz solution given by

φ(n1, · · · , ·nM ) =
∑

P

AP exp


i

M∑

j=1

kP (j)nj


 . (3.22)

The general form of the Schrodinger equation becomes more explicitly

M∑

j=1

(
φ(n1, · · · , nj − 1, · · · , nM ) + φ(n1, · · · , nj + 1, · · · , nM )

− 2φ(n1, · · · , nM )
)

= Eφ(n1, · · · , nM ). (3.23)

The terms which contains two adjacent spins of the same orientation are handled
by the constraints

φ(· · · , nj , nj , · · ·) + φ(· · · , nj + 1, nj + 1, · · ·) = 2φ(· · · , nj , nj + 1, · · ·). (3.24)

Inserting the M -particle wave function into this constraint yields the relation

∑

P

AP +
∑

P

AP eikP (j)+ikP (j+1) = 2
∑

P

AP eikP (j+1) ,

AP = AP exp


i

∑

l 6=j,j 6=j+1

nlkP (l) + njkP (j) + njkP (j+1)


 . (3.25)

It can be seen that only a pair of coefficients AP and AP (j,j+1) need to be
involved in the equality. I define P (j, j + 1) as the original permutation P plus
the interchange of kP (j) and kP (j+1). Hence, Eq. (??) reduces to the pair-wise
equaiton

AP + AP (j,j+1) + (AP + AP (j,j+1))eikP (j)+ikP (j+1) = 2(AP eikP (j+1) + AP (j,j+1)e
ikP (j))

− AP (j,j+1)

AP
≡ −e−iθP (j),P (j+1) =

eikP (j)+ikP (j+1) + 1− 2eikP (j+1)

eikP (j)+ikP (j+1) + 1− 2eikP (j)
. (3.26)

The relation is satisfied by the ansatz

AP = ei
P

i<j θP (i),P (j)/2, − e−iθP (i),P (j) =
eikP (i)+ikP (j) + 1− 2eikP (j)

eikP (i)+ikP (j) + 1− 2eikP (i)
. (3.27)

The fact that AP must be of the form given above is easily illustrated with an
example M = 4. In that case, the phase factor for AP reads (1/2) times

θP (1),P (2) + θP (1),P (3) + θP (1),P (4) + θP (2),P (3) + θP (2),P (4) + θP (3),P (4). (3.28)
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The phase factor for AP (1,2), for instance, is given by 1 and 2 in the above
equation replaced by 2 and 1. An inspection reveals that the net difference
only occurs in replacing θP (1),P (2) by θP (2),P (1), hence the ratio AP (1),P (2)/AP

is indeed equal to e−iθP (1),P (2) . The same result obtains for interchange of any
other consecutive indices j and j + 1.

Following the earlier practice we impose the periodic boundary condition

φ(n1, · · · , nM ) = φ(n2, · · · , nM , n1 + N) →
∑

P

AP ei
P

j kP (j)nj =
∑

P

AP eikP (1)n2+···+ikP (M−1)nM+ikP (M)(n1+N).

(3.29)

One can define a permutation P0 which takes

P0(1) = M, P0(j + 1) = j (j > 1). (3.30)

Then the r.h.s. of Eq. (3.29) becomes

∑

P

AP eikP P0(2)n2+···+ikP P0(M)nM+ikP P0(1)(n1+N) =

∑

P

APP−1
0

ei
P

j kP (j)nj+ikP (1)N =
∑

P

AP ei
P

j kP (j)nj . (3.31)

From the last equality it follows that

AP = APP−1
0

eikP (1)N . (3.32)

The amplitudes are written out explicitly

AP = exp


 i

2

∑

i<j

θP (i),P (j)




APP−1
0

= exp


 i

2

∑

i<j

θPP−1
0 (i),PP−1

0 (j)


 . (3.33)

As long as j < M , θPP−1
0 (i),PP−1

0 (j) gives another element belonging to the
family θP (i),P (j) with i < j. When j = M , one gets

θPP−1
0 (i),PP−1

0 (M) = θP (i+1),P (1) = −θP (1),P (i+1). (3.34)

It follows that Eq. (3.32) becomes

eikP (1)N = ei
PM−1

i=1 θP (1),P (i+1) , (3.35)

or

eikjN = ei
P

l 6=j θjl , (3.36)
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Chapter 4

Hubbard Model

4.1 The Model

In the previous chapter we learned how to analyze electron motion in solids by
employing a simple model - the tight-binding model. An easy generalization of
the model also allowed us to study the disordered system. While disorder is an
essential aspect of all real materials, there is an equally or in some instances even
more important aspect of the many-particle system. And that is the interaction
between the particles. For electrons, the interaction is due to the Coulomb
force. Hubbard model, invented by John Hubbard in the 1950’s, is the most
representative of the models dealing with electron-electron interaction. It is
written as the Hamiltonian

H = T + V

T =
∑

〈ij〉σ
tij

(
c+
jσciσ + c+

iσcjσ

)− µ
∑

iσ

c+
iσciσ

V = U
∑

i

ni↑ni↓ (4.1)

T represents hopping of electron between a pair of sites 〈ij〉 with hopping am-
plitude tij = tji. For simplicity we take tij = −t for all the bonds. Unlike
in the previous chapter we include electron spin σ explicitly because, after all,
real electrons do carry spin. Diagonalizing T in the absence of the interaction
V leads to

∑
kσ εkc+

kσckσ, where εk is the energy of the eigenstate |k〉. Thus T
alone describes delocalized electrons that form a band inside the solid. This has
been the essence of the discussion of previous chapter.

Let’s examine the properties of the V -term. First it is completely local, i.e.
it only acts at a given site i: niσ = c+

iσciσ (no sum on σ) counts the number of
electrons of spin σ at site i. This being an electron model, niσ can only be 0 or
1. When a given site i is occupied by zero electron (ni↑ = ni↓ = 0) or by only
one electron of spin σ (niσ = 1, niσ = 0, ni↑ni↓ = 0), V has an expectation
value of zero. When the site is doubly occupied, i.e. ni↑ = ni↓ = 1, the site
has an energy increase of U . We may therefore understand U as the Coulomb
repulsion energy of the two electrons. The challenge we must face now is to
understand the properties of, and to solve, the model Hamiltonian (4.1) in the
simultaneous presence of T and V .

15



16 CHAPTER 4. HUBBARD MODEL

state ni E
|0〉 0 0

c†i↑|0〉, c†i↓|0〉 1 −µ

c†i↓c
†
i↑|0〉 2 U − 2µ

Table 4.1: Possible atomic states and their energies

In the atomic limit tij→0, the Hamiltonian reduces to the atomic form H =∑
i Hi , Hi = −µni + Uni↑ni↓, that lacks communication between neighboring

sites. Diagonalizing Hi is trivial since each fixed occupation of electron gives an
eigenstate. Eigenstates and their corresponding energies are

Suppose the chemical potential is chosen to satisfy 0<µ< U
2 . Then among

the three possible eigenenergies, only the −µ, corresponding to single occupa-
tion, lies below zero energy. According to the Fermi factor F (E) =

(
eβE + 1

)−1

that determines the occupation probability of a given eigenstate, only the ni = 1
state will occur at zero temperature. That means each site of the lattice will
be occupied by one, and only one electron at zero temperature. Since both spin
states give rise to the same energy, each electron occupying the site can be either
spin up or spin down. For N electrons occupying N different lattice sites, this
leads to enormous ground state degeneracy 2× 2×· · ·× 2=2N . In other words,
any state of the spins given by |σ1σ2 · · · σN 〉, σi =±1, is an eigenstate having
the same energy −µN .

Next we raise the question: when we add the hopping part T to the Hamil-
tonian will the eigenstates of V alone remain eigenstates, and will their energies
differ due to the hopping effect?

Before we answer these equations we re-visit the foundations of quantum me-
chanics. The basic postulates of quantum mechanics is that there are a set of
states, labelled |m〉, that together form a complete, orthonormal set,

∑
m |m〉〈m|=

1, 〈m|n〉 = δmn. Each |m〉 is not necessarily an eigenstate of H, but due to
the completeness any eigenstate of H can be written as a linear combination
|ψ〉=∑

m cm|m〉,

H

(∑
m

cm|m〉
)

= E

(∑
m

cm|m〉
)

. (4.2)

By taking projection on both sides with 〈n|, we get
∑
m

cm〈n|H|m〉 = Ecn. (4.3)

We will call matrix element 〈n|H|m〉 = Vnm, then we have a linear matrix
equation ∑

m

Vnmcm = Ecn. (4.4)

By diagonalizing the matrix Vnm, the eigenvectors {cm} are obtained. Then
the eigenstate of the Hamiltonian is expressed as |ψ〉= ∑

m cm|m〉, having the
energy E.

We apply precisely this strategy to solve the Hubbard model. And before
doing so, we must first identify the basis states to be used in the diagonalization
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process. For a given site i there are four possible states, listed in Table 4.1,
corresponding to zero, one (of spin up and down), and two electron occupation,
which we will label |0i〉, |σi〉, and |di〉 in obvious notation. When there are N
sites, the basis states are given by

|α1〉|α2〉 · · · |αN 〉. (4.5)

where each αi is one of the four possible states. Working out Vnm corresponds
to calculating the overlap of H between two arbitrary basis states (4.5). For
N sites, there are 4N such basis states, and the size of the matrix Vnm is
4N × 4N . Even for N =10, the dimension of the matrix is 410× 410'106× 106!!
Diagonalizing such a huge matrix is impossible, even with the world’s best
computer available right now. In this chapter we will try to diagonalize H up
to N =4.

To get a flavor of the steps needed to diagonalize H, we start with the
two-site Hubbard model

H = Un1↑n1↓ + Un2↑n2↓ − µ
∑

σ

(n1σ + n2σ)− t
∑

σ

(
c+
2σc1σ + c+

1σc2σ

)
. (4.6)

First there are sixteen basis states given as the direct product

{|01〉, | ↑1〉, | ↓1〉, |d1〉} ⊗ {|02〉, | ↑2〉, | ↓2〉, |d2〉}. (4.7)

We know how to work out the matrix element of T already. Since T conserves
the total spin, nonzero element only occurs between states such as

|σ1, 02〉 ↔ |01, σ2〉, |d1, 02〉 ↔ |σ1, σ2〉, or |d1, σ2〉 ↔ |σ1, d2〉. (4.8)

You should carefully work out the matrix element for each of these.
Next, the interaction term V has a nonzero element if and only if a site is

doubly occupied. Thus

〈d1, d2|V |d1, d2〉 = U + U = 2U

〈d1, α2|V |d1, α2〉 = U (α2 6=d2)
〈α1, d2|V |α1, d2〉 = U (α1 6=d1)
〈α1, α2|V |α1, α2〉 = 0 (α1 6=d1, α2 6=d2) (4.9)

In this way we can work out all the matrix elements among 16 basis states. The
16× 16 matrix can be diagonalized easily, and will yield 16 energy levels. The
lowest energy and the corresponding eigenvector defines the ground state of the
Hubbard Hamiltonian.

4.2 Mean-field Theory and Antiferromagnetism

4.2.1 Square lattice

The previous section described a strategy as to how one would exactly diagonal-
ize the Hubbard Hamiltonian for a fixed size and particle number. Undoubtedly
the process will have to stop and, with the present capacity of computing power,
stop at a rather miserably level of the system size. The thermodynamic behavior
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which often emerges only as the limit of the infinite system size is taken is hard
to obtain by direct numerical diagonalization. If one has a good guess what the
ground state of the model will be, on the other hand, one can often define a
mean-field theory that easily produces such a ground state in a self-consistent
manner. Below we show how one such phase, namely the antiferromagnetic
ground state, is “predicted” from the Hubbard model.

First one rewrites the interaction term of the Hubbard model

H = −t
∑

i,j,σ

c+
jσcjσ + U

∑

i

ni↑ni↓ − µ
∑

i

ni (4.10)

using the simple identity

n↑n↓ =
1
4
(n↑ + n↓)2 − 1

4
(n↑ − n↓)2 ≡ 1

4
n2 − 1

4
m2, (4.11)

Uni↑ni↓ =
U

4
(n2

i −m2
i ). (4.12)

We will carry out the meanfield decoupling at half-filling, 〈ni〉 = 1.

U

4
(
n2

i −m2
i

) → U

2
〈ni〉ni − U

2
〈mi〉mi =

U

2
ni − U

2
simi. (4.13)

The average of the magnetic moment is denoted si. The meanfield Hubbard
Hamiltonian is

HMF = −t
∑

ijσ

c+
jσciσ +

(
U

2
− µ

) ∑

i

ni − U

2

∑

i

simi. (4.14)

To describe antiferromagnetism we assume the staggered field si = (−1)is where
s is the size of the magnetic moment at each site. At half-filling the effective
chemical potential µeff = µ− U

2 must equal zero. Hence

HMF = −t
∑

ijσ

c+
jσciσ − η

∑

i

(−1)imi =
∑

kσ

εkc+
kσckσ − η

∑

kσ

σc+
k+Qσckσ,

(4.15)

where η = Us/2. The last line follows from Fourier transform. Q implies
the AF wavevector (π, π)(2D) or (π, π, π)(3D). We divide the original Brillouin
zone [−π, π]⊗ [−π, π] into two: one covers the region bounded by the four lines
kx + ky = π, kx + ky = −π, kx − ky = π, kx − ky = −π, and the other, the
remaining part of the BZ. The first region, shaded in Fig. ??, is the reduced
Brillouin zone (RBZ).

Now one can rewrite the Hamiltonian

HMF =
′∑

kσ

(
εkc+

kσckσ + εk+Qc+
k+Qσck+Qσ

)
−η

′∑

kσ

σ
(
c+
k+Qσckσ+c+

kσck+Qσ

)

=
′∑

kσ

(
c+
kσ c+

k+Qσ

) (
εk −ησ
−ησ εk+Q

)(
ckσ

ck+Qσ

)
. (4.16)



4.2. MEAN-FIELD THEORY AND ANTIFERROMAGNETISM 19

σ = ±1 corresponds to ↑, ↓ spins. The 2× 2 matrix given above can be diago-
nalized exactly with the canonical transformation

(
ckσ

ck+Qσ

)
=

(
cos θk sin θk

− sin θk cos θk

)(
γ1kσ

γ2kσ

)
, (4.17)

provided we take

sin 2θk =
ση

Ek
, cos 2θk =

εk − εk+Q

2Ek
, Ek =

√
η2 +

1
4
(εk−εk+Q)2. (4.18)

In the standard cubic(square) lattice εk+Q = −εk, and thus sin 2θk = ση/Ek,
cos 2θk = εk/Ek, Ek =

√
ε2k + η2. Using this transformation the Hamiltonian is

brought to a diagonalized form:

H =
′∑

kσ

Ek[γ+
1σγ1kσ − γ+

2kσγ2kσ], (4.19)

assume εk = −εk+Q. We have managed to reduce the Hamiltonian to the diag-
onalized form, and obtain the meanfield energies ±Ek. Furthermore, we have
explicitly derived a relation between the quasiparticle operators (γ) and the orig-
inal, electron operators. The eigenvectors of the matrix act as a “connection”
between the two operators. Since Ek > 0, all the k-states in the RBZ for the
lower energy branch are occupied, and completely empty for the upper branch
at zero temperature, in agreement with the original prescription of half-filling.
The ground state is expressed as

|GS〉 =
′∏

k

γ+
2k↑γ

+
2k↓|0〉. (4.20)

The inverse transformation
(

γ1kσ

γ2kσ

)
=

(
cos θk − sin θk

sin θk cos θk

)(
ckσ

ck+Qσ

)
, (4.21)

with

cos θk =

√
1
2

(
1 +

εk

Ek

)
, sin θk = σ

√
1
2

(
1− εk

Ek

)
, (4.22)

gives

γ+
2kσ = ukc+

kσ + σvkc+
k+Qσ,

uk =

√
1
2

(
1− εk

Ek

)
, vk =

√
1
2

(
1 +

εk

Ek

)
. (4.23)

The ground state is expressed as

|GS〉 =
∏

k

(
ukc+

k↑ + vkc+
k+Q↑

)(
ukc+

k↓ − vkc+
k+Q↓

)
|0〉. (4.24)
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The real-space wave function is a product of Slater determinants, D[φ↑(k, r)]D[φ↓(k, r)]:

φ↑(ki, rj) = eiki·rj uk + ei(ki+Q)·rj vk

φ↓(ki, rj) = eiki·rj uk − ei(ki+Q)·rj vk. (4.25)

The mean-field condition on η reads

η = Uη
′∑

k

1
Ek

tanh
(

Ek

2T

)
. (4.26)

This equation has an exact, T = 0 solution in the case of the constant density
of states D(ε) = 1/(2D),

s =
2D/U

sinh[2D/U ]
, (4.27)

The transition temperature TN is given when s = 0, Ek = |εk|.
In this section I have given a rather detailed derivation of the gap equation

for the antiferromagnetic ordering. The BCS problem is entirely similar to this
in its mathematical structure. Technically, if you know how to solve the AF
problem, then you are (almost) equally well prepared for the BCS or any other
kind of mean-field problems of condensed matter physics.

The antiferromagnetic ordering at (π, π) introduced a spatial modulation in
an initially translationally invariant Hamiltonian that led to (i) doubling of the
unit cell and halving of the Brillouin zone and (ii) folding of the band into two
subbands and a gap between the bands. Full occupation of the lower band and a
complete absence in the upper band leads to the opening of the gap at half-filling.

4.2.2 Triangular lattice

For the triangular lattice the ordered spins no longer lie along a common axis.
The general belief is that the ordered moments form a collinear state, with a 120◦

angle between adjacent pair of spins. To capture this in the mean-field theory
one must first generalize the mean-field decoupling of the Hubbard interaction
to the spin-rotation-invariant form

ni↑ni↓ → U

2
〈ni〉ni − U

2
〈si〉 · si =

U

2
ni − U

2
si ·mi. (4.28)

The average moment mi are taken to lie within the plane, and it is useful to
use the characterization in the complex notation

mix + imiy = mi = m0e
iQ·ri (4.29)

Taking Q = (4π/3)x̂ produces the right spin orientation of the triangular lattice
where the lattice sites are given by ri = px̂ + q(x̂/2 +

√
3ŷ/2) for a pair of

integer (p, q). The initial configuration m0 is an arbitrary complex number of
unit magnitude or less. The Zeeman term becomes

−U

2

∑

i

(m∗
i s
−
i + mis

+
i ) = −Um

2
(s−Q + s+

Q) = −Um

2

∑

k

(c+
k+Q↑ck↓ + c+

k↓ck+Q↑).

(4.30)
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The Brillouin zone of the triangular lattice can be broken up into three pieces
of equal area which are connected to each other by the translation of +Q or
−Q in momentum space. The Hamiltonian within the reduced Brillouin zone
becomes

′∑

kσ

(
εkc+

kσckσ + εk+Qc+
k+Q,σck+Q,σ + εk−Qc+

k−Q,σck−Q,σ

)

−η
′∑

k

(
c+
k+Q↑ck↓ + c+

k−Q↑ck+Q↓ + c+
k↑ck−Q↓ + h.c.

)

=
′∑

k




c+
k↑

c+
k↓

c+
k+Q↑

c+
k+Q↓

c+
k−Q↑

c+
k−Q↓




T 


εk 0 0 0 0 −η
0 εk −η 0 0 0
0 −η εk+Q 0 0 0
0 0 0 εk+Q −η 0
0 0 −η 0 εk−Q 0
−η 0 0 0 0 εk−Q







ck↑
ck↓

ck+Q↑
ck+Q↓
ck−Q↑
ck−Q↓




=
′∑

k




c+
k↑

c+
k−Q↓

c+
k+Q↑
c+
k↓

c+
k−Q↑

c+
k+Q↓




T 


εk −η 0 0 0 0
−η εk−Q 0 0 0 0
0 0 εk+Q −η 0 0
0 0 −η εk 0 0
0 0 0 0 εk−Q −η
0 0 0 0 −η εk+Q







ck↑
ck−Q↓
ck+Q↑
ck↓

ck−Q↑
ck+Q↓




(4.31)

where η = mU/2. Although the Hamiltonian looks six-dimensional at first, there
is a pairwise scattering of one type of fermion into another, and no scattering
among the fermions belonging to different pairs. It can be diagonalized by using




c+
k↑

c+
k−Q↓

c+
k+Q↑
c+
k↓

c+
k−Q↑

c+
k+Q↓




=




cos θ1 − sin θ1 0 0 0 0
sin θ1 cos θ1 0 0 0 0

0 0 cos θ2 − sin θ2 0 0
0 0 sin θ2 cos θ2 0 0
0 0 0 0 cos θ3 − sin θ3

0 0 0 0 sin θ3 cos θ3







a1↑
a1↓
a2↑
a2↓
a3↑
a3↓




(4.32)
with

tan 2θ1 =
2η

εk−Q − εk
, tan 2θ2 =

2η

εk − εk+Q
, tan 2θ3 =

2η

εk+Q − εk−Q
. (4.33)

The six eigenenergies are given by

E±
1k =

1
2
[(εk + εk−Q)±

√
(εk − εk−Q)2 + 4η2]

E±
2k =

1
2
[(εk+Q + εk)±

√
(εk+Q − εk)2 + 4η2]
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E±
3k =

1
2
[(εk−Q + εk+Q)±

√
(εk−Q − εk+Q)2 + 4η2].

The bare dispersion is given by εk = −2t[cos kx+cos(kx/2+
√

3ky/2)+cos(kx/2−√
3ky/2)]− µ.

Once we fix the chemical potential at zero, µ = 0, one can see that E+
αk > 0

but E−
αk < 0 for all α = 1, 2, 3. (See Fig. ??.) That means as long as we

take µ = 0 the three lowest bands are completely filled, and the three highest
completely empty, with the net electron density of one per site, or half-filling.
The gap magnitude is given by min(E+

αk − E−
αk) = 2η.

In the triangular lattice, the antiferromagnetic ordering at Q = (4π/3, 0)
introduces a spatial modulation that led to (i) tripling of the unit cell and 1/3-
ing of the Brillouin zone and (ii) folding of the band into six subbands and a gap
separating the lower three bands from the upper three. Full occupation of the
lower bands and a complete absence in the upper bands leads to the opening of
the gap at half-filling. The reduced Brillouin zone has the shape of a hexagon
with the edge-to-edge separation exactly equalling 4π/3.

4.3 Projection to truncated Hilbert space

When the on-site interaction energy U is very large, double occupation of any
given quantum state is realistically forbidden. It is as if the Hilbert space for
each atomic site is restricted to three, consisting of empty, or singly-occupied
with either spin-up or spin-down. Within such a restricted Hilbert space the
Hubbard term no longer exists because ni↑ni↓ acting on such a space will iden-
tically give zero.

It is often the case that the effective Hamiltonian acting within a restricted
Hilbert space looks quite different from the original Hamiltonian defined in the
larger space. Being able to systematically carry out the transformation to the
restricted space is of practical value and the techniques are presented in this
section using the Hubbard model as the starting point.

H =
∑

ijσ

Tjic
+
jσciσ + U

∑

i

ni↑ni↓. (4.34)

We have used Tji above which reduces to Tji = −t in the case of the nearest-
neighbor hopping only. The following derivation is largely taken from Yoshioka,
Girvin, and MacDonald.

Using the fact that the electron occupation plus the hole occupation at any
site for spin σ adds to one, niσ + hiσ = 1, one can split the kinetic term into
three pieces, T = T0 + T1 + T−1 where

T1 =
∑

ijσ

Tjinjσc+
jσciσhiσ

T−1 =
∑

ij

Tjihjσc+
jσciσniσ

T0 =
∑

ijσ

Tjihjσc+
jσciσhiσ +

∑

ijσ

Tjinjσc+
jσciσniσ. (4.35)

T1 increases the number of doubly occupied site by one because it has a non-zero
matrix element if and only if the initial state has the configuration | ↑i↓j〉, or
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| ↓i↑j〉. Then T1 acting on the initial state produces |0idj〉 or |di0j〉, d implying
the doubly occupied site. Similarly, T−1 decrease the number of doubly occupied
sites by one by acting on the initial state |0idj〉 or |di0j〉. T0 does not change
the number of double occupancy because it acts only on the initial state |0iσj〉,
|σi0j〉, or |diσj〉, |σidj〉, σi =↑, ↓.

Now consider a canonical transformation

H
′
= eiSHe−iS (4.36)

using iS = (T1 − T−1)/U . T±1 satisfies the commutation [V, T1] = UT1,
[V, T−1] = −UT−1 where V = U

∑
i ni↑ni↓ is the Hubbard term. By a straight-

forward expansion of H
′
up to second order in S and keeping the leading terms

in O(1/U) we get

H
′
= T0 + V +

1
U

([T1, T−1] + [T1, T0] + [T0, T−1]) . (4.37)

When we let the Hamiltonian H
′

act between states with no doubly occupied
sites it is further reduced to

H
′
= T0 − 1

U
T−1T1 (4.38)

because the other two terms would change the number of doubly occupied sites.
Write out T−1T1 as

∑

ijklσλ

TlkTjihlλc+
lλckλnkλnjσc+

jσciσhiσ. (4.39)

Excluding the three-site interaction we get k = j, l = i,

T−1T1 =
∑

ijσλ

TijTjihiλc+
iλcjλnjλnjσc+

jσciσhiσ. (4.40)

A short consideration gives that the operators have the following action on
the possible spin states on sites i, j:

T−1T1 =
∑

ij

t2ij (| ↑i↓j〉 − | ↓i↑j〉) (〈↑i↓j | − 〈↓i↑j |) = 2t2ij |sij〉〈sij |. (4.41)

The symbol sij refers to the singlet state in the 〈ij〉-bond. For less than half-
filled case it is possible to have an empty site either at i or j, for which T−1T1

would give zero. Taking this into account, |sij〉〈sij | may be re-written

|sij〉〈sij | = 1
4
ninj − si · sj (4.42)

using the spin-1
2 notation. In all, we get

H
′

= T0 +
2
U

∑

ij

t2ij(si · sj − 1
4
ninj),

T0 =
∑

ij

Tjihjσc+
jσciσhiσ. (4.43)
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When we do not confine ourselves to a subspace of no double occupancy, one
other term generated by the canonical transformation in Eq. (4.37) survive.

H
′
= T0 + V +

1
U

(T1T−1 − T−1T1) . (4.44)

The new term induces pair hopping.

4.4 Spin dependent hopping and DM interac-
tion

Under time reversal operation the spin-up and spin-down operators transform
as

ci↑ → ci↓, ci↓ → −ci↑. (4.45)

The most general fermion hopping between a pair of sites 〈ij〉 obeying the time-

reversal symmetry can be written down using the spinor notation ψi =
(

ci↑
ci↓

)
,

Hij = tψ†i [cos θ + i(d̂ · σ) sin θ]ψj = tψ†i [e
iθd̂·σ]ψj . (4.46)

Here d̂ is an arbitrary 3-dimensional real unit vector. The time-reversal opera-

tion renders ψi →
(

0 1
−1 0

)
ψi = iσyψi and one can easily see that the above

expression for Hij is invariant under such a change of ψi plus the conjugation
of id̂ · σ to −id̂ · σ∗. Note that σ∗ = (σx,−σy, σz). Most generally t, θ and d̂
will depend on the bond, so we can write

Hij = tijψ
†
i [e

iθij d̂ij ·σ]ψj . (4.47)

To ensure that the Hamiltonian remains Hermitian we will require d̂ji = −d̂ij .
Let’s consider a specialized case where d̂ij is uniform, so that we can take
d̂ij = +d̂ for j = i + x̂ and j = i + ŷ, and θij = θ, tij = t everywhere. (I’m
assuming a square lattice.) Then the Hamiltonian can be written in the form

H =
∑

i

t
(
ψ†i+xeiθd̂·σ + ψ†i−xe−iθd̂·σ + ψ†i+yeiθd̂·σ + ψ†i−ye−iθd̂·σ

)
ψi. (4.48)

The superexchange calculation in the case of general hopping matrix can be
worked out from the two-site model

tijψ
†
i [e

iθij d̂ij ·σ]ψj + Uni(ni − 1) + Unj(nj − 1). (4.49)

Following Aharonny et al.1 we can eliminate the unitary matrix by the trans-
formation

ψi → [e−i(θij/2)d̂ij ·σ]ψi, ψj → [ei(θij/2)d̂ij ·σ]ψj . (4.50)

1L. Shekhtman, O. Entin-Wohlman, and Ammon Aharony, Phys. Rev. Lett. 69, 836
(1992).
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The Hubbard interaction U
∑

i ni(ni−1) is invariant under the proposed trans-
formation. Then in the rotated basis we obtain the superexchange Hamiltonian

JijSi · Sj , Jij =
t2ij
U

. (4.51)

Now we must rotate the spins back to the original basis.

Si → 1
2
ψ†i e

−i(θij/2)d̂ij ·σσei(θij/2)d̂ij ·σψi = cos θijSi + (1− cos θij)d̂ij(d̂ij · Si)− sin θij(d̂ij × Si)

Sj → 1
2
ψ†je

−i(θij/2)d̂ij ·σσei(θij/2)d̂ij ·σψj = cos θijSj + (1− cos θij)d̂ij(d̂ij · Sj) + sin θij(d̂ij × Sj).

(4.52)

We have invoked the identities

(d̂ · σ)σ(d̂ · σ) = 2d̂(σ · d̂)− σ, σ(d̂ · σ)− (d̂ · σ)σ = 2i(d̂× σ), (4.53)

to show that

e−i(θ/2)d̂·σσei(θ/2)d̂·σ = (cos θ)σ + (1− cos θ)d̂(d̂ · σ)− sin θ(d̂× σ). (4.54)

Now the inner product Si · Sj becomes

Si ·Sj → (cos 2θij)Si ·Sj−(sin 2θij)d̂ij ·(Si×Sj)+(1−cos 2θij)(Si · d̂ij)(Sj · d̂ij).
(4.55)

The terms generated are superexchange, DM, and Kitaev interactions, respec-
tively.

4.5 Orbitally degenerate Hubbard model

Hubbard model treats a localized site subject to a strong Coulomb repulsion.
In real materials, the atomic site treated within the Hubbard framework has
not one, but several orbitals associated with the site. For example, transition
metals have partially occupied d-shells that play a dominant role in the mag-
netic properties. The d-orbitals are fairly localized, so that the local Coulomb
repulsion within an orbital and between different orbitals centered at the same
site are considered important. For such a system, the concept of Hubbard inter-
action needs to be generalized. In addition, multiorbital systems have the Hund
interaction which tends to align the spins for different orbitals. One may write
down a general interaction term between local charge densities and the spins,

V =
U1

2

∑
α

n2
α +

U2

2

∑

α6=β

nαnβ − J1

∑

α6=β

sα · sβ + J2

∑

α6=β

d+
α dβ . (4.56)

We have the intra(inter)-orbital interaction energy U1 (U2), the Hund coupling
energy J1, and J2 which represents the process of moving two electrons simul-
taneously from α-orbital to β-orbital. All four terms shown above are invariant
under the global spin rotation.
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In the absence of crystal field splitting, all orbital states must be degenerate.
Real-space rotation mixes different orbital states α, but the interaction must
be written in a manner independent of the choice of real-space axis. The re-
quirement of rotational invariance dictates the relations between the coefficients,
U1, U2, J1, and J2.

From Dworin and Narath [Phys. Rev. Lett. 25, 1287 (1970)] we find that
the choice

U1 = U + J, U2 = U − J/2, J1 = J, J2 = 0 (4.57)

for the l = 2, five-fold degenerate d-orbitals. The sum over α and β goes from
−2 to +2. This choice of parameters was adopted in later works such as M. J.
Rozenberg [Phys. Rev. B 55, 4855 (1997)] and J. E. Han et al. [ Phys. Rev.
B 58, 4199 (1998)].

On the other hand, Fujimori [Phys. Rev. B 51, 12880 (1995)] and Koga et
al. [Phys. Rev. Lett. 92, 216402 (2004)] adopted a different convention

U1 = U + 2J, U2 = U − J/2, J1 = J = J2. (4.58)

It is possible that the choice of rotation-invariant interaction is not unique.

4.6 Four-boson Theory

We are interested in implementing a numerical scheme for finding the self-
consistent solution of the n-fold degenerate Hubbard model using the four-boson
theory (and its n-fold generalization) introduced by Kotliar and Ruckenstein
(KR). Below we work out the self-consistent equations which arise in the n = 1
case, for (I) the non-uniform situation (assuming no symmetries) and for (II) a
bi-partite case with magnetization.

4.6.1 Non-uniform Case

For the non-uniform situation the effective Hamiltonian to be solved is

H =
∑

〈ij〉σ
− tij

mimj
(d+

j pj−σ + p+
jσej)(p+

i−σdi + e+
i piσ)f+

jσfiσ +
∑

iσ

(ρiσ − µ)f+
iσfiσ

+
∑

i

Ud+
i di −

∑

i

λi(e+
i ei +

∑
σ

p+
iσpiσ + d+

i di − 1)−
∑

iσ

ρiσ(p+
iσpiσ + d+

i di)

(4.59)

where we have introduced the abbreviation mi =
√

niσ(1− niσ), niσ = 〈f+
iσfiσ〉.

In the KR theory this factor is expressed in terms of bosons, e.g. niσ →
1 − e+

i ei − p+
i−σpi−σ, and becomes equal to the present definition only if the

constraints are satisfied exactly. Our scheme has the advantage that it will
simplify the minimization equation considerably. Fermionic part of the Hamil-
tonian is diagonalized as fiσ =

∑N
m=1 umiσψmσ for each species of spin σ. The

number of lattice sites is N .
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Minimizing the free energy with respect to d+
i , p+

iσ lead to the condition2

di =
1∑

σ ρiσ + λi − U


−

∑

jσ

tij
mimj

pi−σ(p+
j−σdj + e+

j pjσ)〈f+
iσfjσ〉


 , (4.60)

piσ =
1

λi + ρiσ


−

∑

j

tij
mimj

[ei(p+
j−σdj + e+

j pjσ)〈f+
iσfjσ〉+ di(d+

j pjσ + p+
j−σej)〈f+

j−σfi−σ〉]

 .

(4.61)
Minimization with respect to e+

i leads to

λiei = −
∑

jσ

tij
mimj

piσ(d+
j pj−σ + p+

jσej)〈f+
jσfiσ〉. (4.62)

We can calculate di and piσ from Eqs. (4.60)-(4.61) and, using e+
i ei = 1 −

d+
i di −

∑
σ p+

iσpiσ
3, obtain ei. Then Eq. (4.62) is used for λi.

ρiσ imposes the constraint 〈f+
iσfiσ〉 = p+

iσpiσ + d+
i di. They can be inde-

pendently obtained by diagonalization the fermion Hamiltonian and from Eqs.
(4.60)-(4.61). If 〈f+

iσfiσ〉 turns out to be greater than p+
iσpiσ + d+

i di one raises
(by hand) the value of ρiσ in the next diagonalization step. This will lower the
expectation value 〈f+

iσfiσ〉 in the next iteration. Iteration will continue until the
identity is achieved.

Chemical potential is adjusted (also by hand) to satisfy the global constraint

1
N

∑

iσ

〈f+
iσfiσ〉 = ν (4.63)

for the filling factor ν. Fermionic averages are given by

〈f+
jσfiσ〉 =

∑
m

u∗mjσumiσF (Emσ). (4.64)

F (Emσ) is the Fermi distribution function corresponding to energy Emσ.

4.6.2 Uniform Case

We specialize to the case of the above Hamiltonian where operators can take on
two different values on sublattice A and B. One can write

fiσ =
∑

k

eik·rifAkσ

fjσ =
∑

k

eik·rj fBkσ (4.65)

2Formally this can be achieved by differentiating H with respect to all the variables,
and setting them equal to zero. Expressions involving fermions are replaced by their finite-
temperature averages. Although in the actual calculation complex fields such as d+

i will be

treated as a real number, and thus d+
i = di, it is convenient during the derivation to keep the

complex nature of the boson fields.
3In invoking this relation we are already carrying out the minimization with respect to λi.
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for i and j belonging to sublattice A and B, respectively. k is restricted to
half the Brillouin zone. An example is the diamond-shaped space covered by
connecting (π, 0)− (0, π)− (−π, 0)− (0,−π) in the BZ.

Introducing similar notations for other variables, the effective Hamiltonian
becomes

H =
∑

kσ

εk(z+
BσzAσf+

BkσfAkσ + z+
AσzBσf+

AkσfBkσ)

+
∑

kσ

(ρAσ − µ)f+
AkσfAkσ +

∑

kσ

(ρBσ − µ)f+
BkσfBkσ

+
N

2
× {Ud+

AdA − λA(e+
AeA +

∑
σ

p+
AσpAσ + d+

AdA − 1)

−
∑

σ

ρAσ(p+
AσpAσ + d+

AdA) + (A → B)}. (4.66)

Expressions for z are

zAσ =
1√

nAσ(1− nAσ)
(p+

A−σdA + e+
ApAσ)

zBσ =
1√

nBσ(1− nBσ)
(p+

B−σdB + e+
BpBσ). (4.67)

The eigenenergies for the fermion part are given by4

Ekσ± =
1
2
(ρAσ + ρBσ)− µ±

√
1
4
(ρAσ − ρBσ)2 + ε2k|zAσ|2|zBσ|2. (4.68)

Free energy of the system becomes

F =
∑

kσ±

[
Ekσ± − T ln(1 + eβEkσ±)

]
+

N

2
×

{
Ud+

AdA − λA(e+
AeA +

∑
σ

p+
AσpAσ + d+

AdA − 1)−
∑

σ

ρAσ(p+
AσpAσ + d+

AdA) + (A → B)

}
.

(4.69)

Minimization of F takes place with respect to d+
A, d+

B , e+
A, e+

B , p+
Aσ, p+

Bσ, ρAσ, ρBσ, λA, λB ,
and the chemical potential µ. ∂F/∂d+

A,B = 0 gives

dA =
1

ρA↑ + ρA↓ + λA − U
× 2

N
×

∑

kσ±
F (Ekσ±)

∂Ekσ±
∂d+

A

dB =
1

ρB↑ + ρB↓ + λB − U
× 2

N
×

∑

kσ±
F (Ekσ±)

∂Ekσ±
∂d+

B

. (4.70)

4Since for each k and σ there is mixing between A and B, one ends up diagonalizing a 2×2
matrix, whose engenvalues are distinguished as Ekσ±.
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∂F/∂p+
A,Bσ = 0 gives

pAσ =
1

ρAσ + λA
× 2

N
×

∑

kσ′±
F (Ekσ′±)

∂Ekσ′±
∂p+

Aσ

pBσ =
1

ρBσ + λB
× 2

N
×

∑

kσ′±
F (Ekσ′±)

∂Ekσ′±
∂p+

Bσ

. (4.71)

∂F/∂e+
A,B = 0 gives

λAeA =
2
N
×

∑

kσ±
F (Ekσ±)

∂Ekσ±
∂e+

A

λBdB =
2
N
×

∑

kσ±
F (Ekσ±)

∂Ekσ±
∂e+

B

. (4.72)

∂F/∂ρA,Bσ = 0 gives

p+
AσpAσ + d+

AdA =
2
N

∑

k±
F (Ekσ±)

∂Ekσ±
∂ρAσ

p+
BσpBσ + d+

BdB =
2
N

∑

k±
F (Ekσ±)

∂Ekσ±
∂ρBσ

. (4.73)

Writing out the derivatives explicitly gives

dA =
1

ρA↑ + ρA↓ + λA − U
× 1

N
×

∑

kσ±
±F (Ekσ±)

ε2k√
D

|zBσ|2pA−σ(p+
A−σdA + e+

ApAσ)
nAσ(1− nAσ)

dB =
1

ρB↑ + ρB↓ + λB − U
× 1

N
×

∑

kσ±
±F (Ekσ±)

ε2k√
D

|zAσ|2pB−σ(p+
B−σdB + e+

BpBσ)
nBσ(1− nBσ)

.

(4.74)

pAσ =
1

ρAσ + λA
× 1

N
×

∑

k±
±F (Ekσ±)

ε2k√
D
×

[
|zB−σ|2dA(pAσd+

A + eAp+
A−σ)

nA−σ(1− nA−σ)
+
|zBσ|2eA(pAσe+

A + dAp+
A−σ)

nAσ(1− nAσ)

]

pBσ =
1

ρBσ + λB
× 1

N
×

∑

k±
±F (Ekσ±)

ε2k√
D
×

[
|zA−σ|2dB(pBσd+

B + eBp+
B−σ)

nB−σ(1− nB−σ)
+
|zAσ|2eB(pBσe+

B + dBp+
B−σ)

nBσ(1− nBσ)

]
.

(4.75)
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λAeA =
1
N
×

∑

kσ±
±F (Ekσ±)

ε2k√
D

|zBσ|2pAσ(pA−σd+
A + eAp+

Aσ)
nAσ(1− nAσ)

λBeB =
1
N
×

∑

kσ±
±F (Ekσ±)

ε2k√
D

|zAσ|2pBσ(pB−σd+
B + eBp+

Bσ)
nBσ(1− nBσ)

.

(4.76)

p+
AσpAσ + d+

AdA =
1
N

∑

k±
F (Ekσ±)

(
1± ρAσ − ρBσ

2
√

D

)

p+
BσpBσ + d+

BdB =
1
N

∑

k±
F (Ekσ±)

(
1∓ ρAσ − ρBσ

2
√

D

)
(4.77)

where D = (1/4)(ρAσ − ρBσ)2 + ε2k|zAσ|2|zBσ|2. Condition on the chemical
potential reads

1
N

∑

kσ±
F (Ekσ±) = ν. (4.78)

Strategy for updating the variables are as follows. From Eqs. (4.74) and
(4.75) one obtains updated values for dA, dB , pAσ, and pBσ. Using e+

AeA =
1 − d+

AdA − ∑
σ p+

AσpAσ and the corresponding relation for B sublattice one
obtains eA, eB . From Eq. (4.76), using known values of eA, eB from above one
obtains λA, λB . Finally, Eq. (4.77) determines ρAσ−ρBσ. The even combination
ρAσ + ρBσ leads to the uniform shift of the chemical potential (see Eq. (4.68)),
or it can be absorbed into µ. Taking the difference of the two equations in Eq.
(4.77) gives

p+
AσpAσ + d+

AdA − p+
BσpBσ + d+

BdB = 〈f+
AσfAσ〉 − 〈f+

BσfBσ〉
= (ρAσ − ρBσ)× 1

N

∑

k±
±F (Ekσ±)√

D
. (4.79)

The occupation of electrons with spin σ will be different on the two sublattices
provided ρAσ 6= ρBσ, indicating antiferromagnetic component of spin. In prac-
tice I think one should set ρAσ = −ρBσ = ρσ from the outset. This simplifies
the equation to

p+
AσpAσ + d+

AdA − p+
BσpBσ + d+

BdB = ρσ × 2
N

∑

k±
±F (Ekσ±)√

D
(4.80)

for D = ρ2
σ + εk|zAσ|2|zBσ|2 and Ekσ± = −µ±√D.

The ground state can be (i) uniform and paramagnetic, (ii) uniform and
spin-polarized (for nonzero ρσ) or (iii) possess staggered magnetic moment.



Chapter 5

Spin Interactions

5.1 Higher-order exchange processes

The Heisenberg spin exchange model describes spin interactions of the type
Si · Sj for two neighboring spins. In real materials the interactions between
spin degrees of freedom are undoubtedly more complicated, but it is a highly
nontrivial matter to figure out what sort of terms, or processes, contribute
significantly to the Hamiltonian.

It is a curious fact of quantum mechanics that, for S = 1/2 spins, this
exchange term has a close connection with the pair exchange operator Pij which
simply swaps the quantum states located at i and j; Pij |αiβj〉 = |βiαj〉. Here
α and β may represent any of the available quantum states. For S = 1/2, one
can readily verify

Pij = 2
(

Si · Sj +
1
4

)
. (5.1)

To prove that the two operator expressions are identical requires that the action
of each operator on any given state yields exactly the same new state whether
we use Pij or 2(Si · Sj + 1/4). So, let’s prove it. With S = 1/2, there are only
four available states, | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉, so our task is reduced to checking
the validity of Eq. (5.1) for each of the four states. For | ↑↑〉 one gets

Pij | ↑↑〉 = | ↑↑〉.

Now, let’s see what happens when we act with the r.h.s. of Eq. (5.1)

2
(

Si · Sj +
1
4

)
| ↑↑〉 = 2

(
Sz

i Sz
j +

1
2

)
| ↑↑〉 = 2

(
1
2

1
2

+
1
4

)
| ↑↑〉 = | ↑↑〉.

OK, so both operators produce the same state, | ↑↑〉, when acting on | ↑↑〉. For
| ↑↓〉, one has Pij | ↑↓〉 = | ↑↓〉, because the up- and down-spins simply swap
their positions. Before acting with the r.h.s. of Eq. (5.1) again, first remember
that

Si · Sj = Sz
i Sz

j +
1
2
(S+

i S−j + S−i S+
j ). (5.2)

31



32 CHAPTER 5. SPIN INTERACTIONS

After collecting the result of action with each of the three operators of Eq. (5.2)
on | ↑↓〉 we obtain

2
(

Sz
i Sz

j +
1
2
S+

i S−j +
1
2
S−i S+

j +
1
4

)
| ↑↓〉

= 2
(
−1

4
| ↑↓〉+ 0 +

1
2
| ↑↓〉+

1
4
| ↑↓〉

)

= | ↑↓〉.

Again, we obtain agreement. The case for | ↑↓〉 and | ↓↓〉 states proceeds
similarly and need not be reproduced here. Hence we learn that the cherished
Heisenberg exchange model may equally well be written

H =
J

2

∑

〈ij〉
Pij .

In reality, there is no reason to just stop with exchanging two particles at a time.
Why not exchange the spins of three, or even four sites at once. For example,
the 3-site exchange process is depicted in Fig. ??.

The exchange process of this type is denoted Pijk, in obvious generaliza-
tion of the two particle exchange. In turn, the three particle exchange can be
decomposed as a series of two-particle exchanges:

Pijk = PikPij .

Proof : Label the states of i, j, k sites by A,B, C and denote the state
|AiBjCk〉. The cyclic exchange Pijk produces a state |CiAjBk〉. Acting on
the original state |AiBjCk〉 with Pij gives |BiAjCk〉. Acting on this state with
Pik gives |CiAjBk〉, same as Pijk|AiBjCk〉. Acting with PjiPjk or PkjPki leads
to the same state. There is also the clockwise permutation of the states P−1

ijk

which renders
P−1

ijk |AiBjCk〉 = |BiCjAk〉
The same result is achieved if we act with PijPik, hence

P−1
ijk = PijPik = PjkPji = PkiPkj .

In any sensible physical system the two processes - clockwise and anti-
clockwise - occur with same amplitude, and thus the most general 3-site ex-
change process is described by a term in the Hamiltonian

∑

〈ijk〉
(Pijk +P−1

ijk ) =
1
3

∑

〈ijk〉
(PikPij +PjiPjk +PkjPki +PijPik +PjkPji +PkiPkj).

Insert Pij = 2(Si · Sj + 1/4) into this, one gets

∼
∑

〈ijk〉
(Si · Sj)(Si · Sk) + (Sj · Sk)(Sj · Si) + (Sk · Si)(Sk · Sj) (5.3)

plus 2-site spin interactions which are readily absorbed into the Heisenberg term.
So, allowing a 3-particle exchange generates a new spin interaction term in the
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Hamiltonian of the form shown in Eq. (5.3). The general spin Hamiltonian
involving 2- and 3-particle exchanges can be written down

H = J1

∑

〈ij〉
Si · Sj

+J2

∑

〈ijk〉
(Si · Sj)(Si · Sk) + (Sj · Sk)(Sj · Si) + (Sk · Si)(Sk · Sj). (5.4)

Generalization to 4-particle exchange is also obvious, and is left to the reader.
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Chapter 6

Spin Representation and
Spin Excitation

There are several kinds of representations for spin operators. Some of them are
exclusively used for S = 1/2, and others are applicable for general S. They also
lead to different ways of obtaining the spin excitations of a given spin interaction
model.

6.1 Semiclassical Equation of Motion

6.1.1 Ferromagnet

In the ferromagnetic spin model, how each spin will dance in coordination with
the others is determined by the Hamiltonian

H = −J
∑

〈ij〉
Si · Sj , (6.1)

and the equation of motion for the individual spin Si that follows from it. We
first remind ourselves of the fundamental commutation relations of spin

[Sα
i , Sβ

j ] = iδijεαβγSγ
i (~ ≡ 1). (6.2)

From this one can calculate, for instance,

dSx
i

dt
= −i[Sx

i ,H] = −J
∑

j∈i

(
Sy

j Sz
i − Sz

j Sy
i

)
= −J

∑

j∈i

(
Sj × Si

)x
. (6.3)

Combined with the equation of motion for the y- and z-components, we get

dSi

dt
= −J

∑

j∈i

Sj × Si. (6.4)

This equation is of a typical, nonlinear type because the quantities we must
solve for, Si, appears as a product on the r.h.s. In other words, one can never

35
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solve the above equation exactly. However we must remind ourselves that it
is the small fluctuation away from the ground state that concerns us, and as
such we can decompose the spin operator as Si = 〈Si〉 + δSi = mi + δSi,
where mi represents the ground state spin average. For a ferromagnetic ground
state, mi = Sẑ. A small fluctuation means |〈Si〉| À |δSi|. In making such
a comparison of magnitudes we must be careful to remember that mi is a
number, but δSi is not. So, it’s not altogether clear what exactly we mean
by the magnitude of δSi. Nevertheless, we can at least make the substitution
Si = mi + δSi as a matter of formal definition, and proceed to plug it into Eq.
(6.11).

d

dt
δSi = −J

∑

j∈i

(
mj + δSj

)× (
mi + δSi

) ≈

−J

( ∑

j∈i

mj

)
×mi − J

( ∑

j∈i

mj

)
× δSi − J

( ∑

j∈i

δSj

)
×mi (6.5)

ignoring terms of order
(
δS

)2. The sum
∑

j∈i comprises all the nearest-neighbor
sites j for i. Once again, the justification is that δS is a small quantity, and
(δS)2, even smaller. We take the quantization axis ẑ and write mi = mẑ
everywhere. Then1

d

dt
δSi = −Jzmẑ × δSi − Jm

( ∑

j

δSj

)
× ẑ. (6.6)

The ẑ-component of this equation reads d
dtδS

z
i = 0, hence the fluctuation in the

ẑ-component of spin is zero, Sz
i

(
t
)

= m. For the x̂-and ŷ-components we get

d

dt
Sx

i = JzmSy
i − Jm

∑

j∈i

Sy
j ,

d

dt
Sy

i = −JzmSx
i + Jm

∑

j∈i

Sx
j . (6.7)

We have dropped the δ symbol in front. Introducing the complex notation
Zi ≡ Sx

i + iSy
i simplifies the equation a lot:

dZi

dt
= iJm


∑

j∈i

Zj − zZi


 . (6.8)

We will solve this equation using the ansatz

Zi = Z0e
ik·ri−iωkt, (6.9)

which yields the self-consistency condition

ωk = Jm


z −

∑

j∈i

eik·(rj−ri)


 . (6.10)

1I apologize for the multiple use of z here: z is the number of neighbors, or the coordination
number, whereas ẑ is the unit vector along the z-axis.
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For a 3-dimensional cubic lattice,
∑

j∈i eik·(rj−ri) = 2(cos kx + cos ky + cos kz),
and with z = 6, ωk = 2Jm(3 −∑

α cos kα). For 2D square lattice we will get
ωk = 2Jm(2− cos kx − cos ky). This is the desired spin wave energy for a spin
disturbance associated with a wavevector k.

6.1.2 Antiferromagnet

For an antiferromagnet, the equation of motion reads

dSi

dt
= J

∑

j∈i

Sj × Si. (6.11)

The linearized equation of motion is

d

dt
δSi = J

( ∑

j∈i

mj

)
× δSi + J

( ∑

j∈i

δSj

)
×mi. (6.12)

We take the quantization axis ẑ and write mi = (−1)imẑ. Then, the whole
square lattice can be divided into two sublattices: i ∈ A if (−1)i = 1, and i ∈ B
if (−1)i = −1. A lattice for which such a division into two sublattices can be
carried out is known as a bipartite lattice.

We write δSi as Si and note that mj for the neighbors j surrounding the
site i is always opposite to mi: mj = −mi.

d

dt
Si = zJSi ×mi + J

( ∑

j∈i

Sj

)
×mi. (6.13)

Finally, we note that the staggered nature of the average magnetization mi

implies that the spin fluctuation Si must contain both uniform and staggered
components. With this knowledge, one can write Si as

Si = S0
i + (−1)iS1

i . (6.14)

Inserting this expression into the equation of motion and writing down the
equations separately for the uniform and the staggered components, one obtains

d

dt
S0

i = zJS1
i ×ms

i − J

( ∑

j∈i

S1
j

)
×ms

i

d

dt
S1

i = zJS0
i ×ms

i + J

( ∑

j∈i

S0
j

)
×ms

i (6.15)

The staggered magnetization ms
i = (−1)imi = mẑ is uniform. Since all the

quantities appearing in the above equation is slowly varying, one can write
S0

i = S0eik·ri−iωt, S1
i = S1eik·ri−iωt, and obtain

−iωS0 = mzJ
(
S1 × ẑ − εkS1 × ẑ

)
,

−iωS1 = mzJ
(
S0 × ẑ + εkS0 × ẑ

)
. (6.16)
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where we write zεk =
∑

j∈i eik·(rj−ri). Using the complex notation S0 = S0
x +

iS0
y , S1 = S1

x + iS1
y , we can re-write the equation as

ωS0 = mzJ(1− εk)S1,

ωS1 = mzJ(1 + εk)S0. (6.17)

It readily follows that ωk = mzJ
√

1− ε2
k.

6.1.3 Spiral ferromagnet

We work out the elementary excitations for the spiral ferromagnet given by the
Hamiltonian

HHDM = −J
∑

i

Si · (Si+x̂+Si+ŷ)−K
∑

i

(
Si×Si+x̂ ·x̂+Si×Si+ŷ ·ŷ

)

= −
∑

〈ij〉
Si ·

(
JSj + KSj ×êji

)
. (6.18)

where we have introduced the unit vector êji extending from site i to site j.
Using the previously derived equation of motion for a ferromagnet, one can

write down the equation of motion for the spiral ferromagnet easily

dSi

dt
= Si ×

∑

j∈i

(
JSj + KSj × êji

)
. (6.19)

As before, we use Si = mi + δSi. The zeroth order term vanishes by default.
In fact, the relation

mi ×
∑

j∈i

(
Jmj + Kmj × êji

)
= 0 (6.20)

defines the classical ground state. The spiral spin state that concerns us is given
by mi = meik·ri + c.c. where

m =
1√
2
(ê1 − iê2), ê1 × ê2 = k. (6.21)

Here k̂ = (1, 1)/
√

2 is the propagation vector of the spiral spins. One can show
that

∑

j∈i

(
Jmj + Kmj × êji

)
= αmi (6.22)

with the constant α given by

α = 4J cos Q + 2
√

2K sinQ. (6.23)

From an independent calculation we know that in two dimensions tanQ =
K/
√

2J , so that
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α = 4J cos Q + 2
√

2K sinQ = 2
√

2
√

K2 + 2J2. (6.24)

Then the linearized equation of motion for the spiral ferromagnet becomes

d

dt
Si = mi ×

∑

j∈i

(
JSj + KSj × êji

)
+ αSi ×mi. (6.25)

We introduce a set of orthogonal vectors explicitly,

k =
1√
2
(1, 1, 0)

mi =
(
− 1√

2
cos[Q · ri],

1√
2

cos[Q · ri], sin[Q · ri]
)

ni =
(
− 1√

2
sin[Q · ri],

1√
2

sin[Q · ri],− cos[Q · ri]
)
.

(6.26)

One can easily verify that the three vectors (ni,mi,k) form a right-handed
orthogonal basis at each site i. And using these orthogonal vectors, the equation
(6.25) can be decomposed into three components, Sk

i , Sm
i , Sn

i ,where

Sk
i = Si · k, Sm

i = Si ·mi, Sn
i = Si · ni.

Inserting the vectors (6.26) into (6.25) and using some vector identities and
trigonometric formulas, one immediately obtains d

dtS
mi
i = 0, hence Smi = 0.

The other two equations are

d

dt
Sk

i = −αSn
i − J cos Q

(
Sn

i−x̂ + Sn
i+x̂ + Sn

i−ŷ + Sn
i+ŷ

)

− K√
2

[
cos[Q · ri]

(
Sk

i+x̂ − Sk
i−x̂ + Sk

i−ŷ − Sk
i+ŷ

)

+ sinQ
(
Sn

i−x̂ + Sn
i+x̂ + Sn

i−ŷ + Sn
i+ŷ

)]

d

dt
Sn

i = αSk
i + J

(
Sk

i−x̂ + Sk
i+x̂ + Sk

i−ŷ + Sk
i+ŷ

)

− K√
2

(
cos[Q · (ri + x̂)]Sn

i+x̂ − cos[Q · (ri − x̂)]Sn
i−x̂

+cos[Q · (ri − ŷ)]Sn
i−ŷ − cos[Q · (ri + ŷ)]Sn

i+ŷ

)
. (6.27)

where i in sub and superscript means ri , so i± x̂ = ri± x̂ and i± ŷ = ri± ŷ.

6.1.4 Multiple spiral ferromagnet

6.2 Holstein-Primakoff theory

There is a neater way of deriving the same spin wave spectrum we have just
derived above, using the method of Holstein-Primakoff (HP) representation of
spins. The technique applies somewhat differently for an antiferromagnet as it
does for a ferromagnet, and we start off with the simpler case of a ferromagnet.
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6.2.1 Ferromagnet

First, I will introduce the representation (ni = b†i bi),

S+
i = Sx

i + iSy
i = (2S−ni)1/2bi,

S−i = Sx
i − iSy

i = b†i (2S−ni)1/2,

Sz
i = S − ni, (6.28)

then verify that the new expressions on the r.h.s. of the above equations satisfy
all the commutation algebras of ordinary spin operators: [Sα

i , Sβ
j ] = iδijεαβγSγ

i ,
provided the new operator bi is a canonical boson operator, with the familiar
bosonic commutation relations, [bi, b

†
j ] = δij , etc.

How this comes about does not concern us so much here; rather we will
proceed to apply the brand new technique and see if something good comes out.
First rewrite

Si · Sj = Sz
i Sz

j +
1
2
(S+

i S−j + S−i S+
j )

= (S − ni)(S − nj) +
1
2
(2S−ni)

1
2 (2S−nj)

1
2 (b†i bj + b†jbi). (6.29)

OK, so it doesn’t appear particular illuminating after the substitution. But
let’s try to appeal to our physical senses to see if some simplifications can occur.
We already know the ground state of the Hamiltonian is given by a ferromagnetic
arrangement of spins, with all the spins pointing in the ẑ-direction. If we take
the average of the operator Sz

i in the ground state, at zero temperature, we
should get 〈Sz

i 〉 = S. The same can be said of the r.h.s. of the last of Eq.
(6.28) because it is just a mathematically equivalent way of writing down the
same quantum-mechanical operator, so we must get 〈S − ni〉 = S, or 〈ni〉 = 0!
This means that the quantum-mechanical ground state |0〉 of the ferromagnetic
Heisenberg spin model is defined by the condition that 〈0|ni|0〉 = 0 for all sites i.
An excitation is just a small wiggle of the spins away from the absolutely frozen
spin configuration that is the ground state, hence we can suppose that 〈Sz

i 〉
deviates only slightly from its ground state value S, or in the language of bosons,
that ni is some small, but non-zero number. In this limiting circumstance, we
can simplify the square roots in Eq. (6.28) by taking

√
2S − ni ≈

√
2S, and

writing

Si · Sj ≈ (S − ni)(S − nj) +
1
2
· 2S(b†i bj + b†jbi).

≈ S2 − S(ni + nj) + S(b†i bj + b†jbi). (6.30)

The ninj is a product of two small numbers, so we delete them. The fully
HP-transformed Hamiltonian, after the approximations we have just made, will
be

HHP ≈ −JS
∑

〈ij〉
(b†i bj + b†jbi − b†i bi − b†jbj). (6.31)
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Well, now the new Hamiltonian is just a quadratic Hamiltonian involving only
a product of two boson operators. Such operators can be diagonalized easily, in
this case by going to the Fourier space:

bi =
∑

k

eik·ribk. (6.32)

Substitution of the Fourier expression for bi into Eq. (6.31) immediately gives

H =
∑

k

ωkb†kbk (6.33)

where

ωk = JSz(1− γk)

γk = z−1
∑

j∈i

eik·(rj−ri). (6.34)

The eigenenergy ωk agrees with the spin-wave spectrum derived earlier, in Eq.
(6.10), using the equation-of-motion theory.

6.2.2 Antiferromagnet

The strategy for dealing with elementary spin excitations of an antiferromagnet
is essentially the same, but the technique is more advanced.

First of all, we define a new quantum-mechanical operator Sy
i , Sz

i related to
Sy

i , Sz
i by the relation

Sy
i + iSz

i = eiθi(Sy
i + iSz

i ) (6.35)

where θi is the angle of the classical ground state spins, θi = π(ix + iy). This
represents a rotation of spins, with respect to the x-axis, by the angle that just
equals the orientation of the classical ground state spins. The x-component
remains unchanged, hence Sx

i = Sx
i . Furthermore, one can easily verify that

the new operators Sα
i satisfy all the commutation rules of the original spins, Sz

i ,
hence they are as good a representation of the local spin operator as the previous
one we used. In terms of Si, we have the antiferromagnetic Hamiltonian written
as

H = J
∑

〈ij〉
Si · Sj → J

2

∑

〈ij〉

(S+
i S+

j + S−i S−j
)− J

∑

〈ij〉
Sz

i Sz
j . (6.36)

Note that we have two raising (lowering) operators instead of one raising and
one lowering, as was the case before. The ground state of the new Hamiltonian,
Eq. (6.36), is given by the rotation of the antiferromagnetic spins, 〈Sz

i 〉 = Seiθi .
But this implies that in the new representation, 〈Sz

i 〉 = S everywhere! Since
〈Sy

i 〉 = 0 initially, we have 〈Sy
i 〉 = 0, too. So the new Hamiltonian has a

ferromagnetic ground state with all the spins pointing in the +ẑ direction, and
we can make the assumption 〈Sz

i 〉 ≈ S, or 〈ni〉 ¿ S after the HP substitution,
for the small-fluctuation analysis.

Under these assumptions the HP-transformed Hamiltonian becomes

H ≈ JS
∑

〈ij〉
(b†i b

†
j + bibj + ni + nj). (6.37)
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Unlike its ferromagnetic counterpart, Eq. (6.31), this Hamiltonian has a prod-
uct of two annihilation (creation) operators. As before, we take the Fourier
transform and obtain

H = JSz
∑

k

[
b†kbk +

γk

2
(b†kb†−k + bkb−k)

]
. (6.38)

Whereas doing the Fourier transform was sufficient to yield excitation en-
ergies in the previous example of ferromagnetic spins, now the Hamiltonian
written in momentum space fails to give eigenenergies. The final trick lies in
working out the equation of motion of the boson operators, which gives

[H, bk] = −JSz
(
bk + γkb†−k

)
. (6.39)

Here it’s clear why we could not get the energy from Fourier transform alone.
The dynamics of the operator bk is coupled to that of b†−k, and the dynamics of
b†−k is coupled to that of bk by the equation

[H, b†−k] = JSz
(
b†−k + γkbk

)
. (6.40)

Noting that [H, X] = −idX/dt in quantum mechanics, and that for the eigen-
modes we can re-write the time derivative as −iE, where E is the eigenenergy,
the coupled oscillator equation we must solve becomes

Ek

(
bk

b†−k

)
= JSz

(
1 γk

−γk −1

)(
bk

b†−k

)
. (6.41)

Eigenvalues are readily found as Ek = ±JSz
√

1− γ2
k. Here I state, without

proof, that the negative energies are just artifacts of the theory, and that only
the positive branch matters. Hence, the spin waves in the antiferromagnetic
background carries the energy given by JSz

√
1− γ2

k for a wave vector k.

6.2.3 Spiral ferromagnet

We work out the HP theory of elementary excitations for the spiral ferromagnet
given by the Hamiltonian

HHDM = −J
∑
r

Sr · (Sr+x̂+Sr+ŷ)−K
∑
r

(
Sr×Sr+x̂ ·x̂+Sr×Sr+ŷ ·ŷ

)
. (6.42)

6.2.4 Multiple spiral ferromagnet

HHDM = −J
∑
r

Sr · (Sr+x̂+Sr+ŷ)−K
∑
r

(
Sr×Sr+x̂ ·x̂+Sr×Sr+ŷ ·ŷ

)

+A1

∑
r

(
(Sx

r )4+(Sy
r )4+(Sz

r )4
)
−A2

∑
r

(
Sx

r Sx
r+x̂+Sy

r Sy
r+ŷ

)

−H ·
∑
r

Sr. (6.43)
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6.3 Schwinger bosons

Schwinger found a way to represent the spin operator using a pair of canonical
boson operators (b1, b2) as

S+ = Sx + iSy = b†1b2

S− = Sx − iSy = b†2b1

Sz =
1
2
(b†1b1 − b†2b2). (6.44)

More concisely one can write S = 1
2b†ασαβbβ . The spin operators thus defined

obey the canonical spin operator relation

[Sα, Sβ ] = iεαβγSγ . (6.45)

The original spin operator has the additional property S · S = S(S + 1) which
translates into (b†1b1 + b†2b2)(b

†
1b1 + b†2b2 + 2)/4 upon the substitution of Eq.

(6.44). To match the original relation, the sum of the two boson occupation
numbers must equal 2S:

b†1b1 + b†2b2 = 2S. (6.46)

This puts constraint on the the allowed boson Hilbert space of a and b operators.
The spin state with total spin S and Sz = m is represented

|Sm〉 =
(b†1)

S+m

√
(S + m)!

(b†2)
S−m

√
(S −m)!

|0〉. (6.47)

For spin half the representation becomes | ↑〉 = b†1|0〉, and | ↓〉 = b†2|0〉.
We can also consider the parametrization

b1 =

√
S

2
cos

θ

2
, b2 =

√
S

2
sin

θ

2
e−iφ (6.48)

from which we deduce S = S(sin θ cos φ, sin θ sinφ, cos θ). For a pair of sites i
and j we have the relation2

∑
σ

b†jσbiσ = eiωij/2

∣∣∣∣
1 + Ωi · Ωj

2

∣∣∣∣
1/2

. (6.49)

ωij is the solid angle subtended by ẑ, Ωi and Ωj . Substituting Eq. (6.48) in the
action b†i∂τ bi also gives rise to the Berry phase action first discussed by Haldane.

Now let’s see how the Heisenberg Hamiltonian looks like in the Schwinger
boson representation. Unlike the Holstein-Primakoff theory, we do not need to
know a priori what the classical ground state looks like. For this reason the
Schwinger boson theory is best applied to cases where the ground state does
not possess broken symmetry.

It is useful to decompose the spin-spin interaction term Si · Sj as

2Patrick Lee, PRL 63, 680 (1989)



44 CHAPTER 6. SPIN REPRESENTATION AND SPIN EXCITATION

Si · Sj = S2 − 1
2
A+

ijAij (6.50)

where Aij = b1ib2j − b2ib1j if it is an antiferromagnet, and as

Si · Sj =
1
2
B+

ijBij − S(S + 1) =
1
2

: B+
ijBij : −S2 (6.51)

where Bij = b†i1bj1 + b†i2bj2 if it is a ferromagnet. With this substitution the
Heisenberg Hamiltonian, which originally expressed how the nearby spins inter-
act, becomes one for two bosons interacting with each other through the A+

ijAij

term. Not surprisingly, such interaction Hamiltonian is not exactly solvable.
Instead one relies on an approximation scheme which renders the Hamiltonian
more analytically tractable. We call it the Schwinger boson mean-field theory
(SBMFT) which we describe below.

6.3.1 Ferromagnet

6.3.2 Antiferromagnet

Assume that one of the operators in A+
ijAij can be replaced by its average,

Qij = 〈b1ib2j − b2ib1j〉. Then we obtain the mean-field Hamiltonian

HMF = −1
2

∑

〈ij〉

(
Q∗ijAij + QijA

+
ij

)
. (6.52)

The new Hamiltonian contains only a pair of boson operators, and like all quan-
tum theories involving only a product of two operators, it is solvable.

Although the theory of diagonalization of the mean-field Hamiltonian can be
readily derived, we first introduce a method that will prove useful for treating
a variety of lattice situations. In spirit, this is similar to the rotation of the
classical spin angles to make all the spins aligned ferromagnetically along a
specific direction.

Let’s say the putative classical spin average is given by 〈Si〉 = SΩi and
Ωi = (sin θi cos φi, sin θi sinφi, cos θi). This will in turn impose the condition on
the Schwinger boson average

〈b†i1bi2〉 = Seiφi sin θi

〈b†i2bi1〉 = Se−iφi sin θi

1
2
〈b†i1bi1 − b†i2bi2〉 = S cos θi. (6.53)

Introduce the unitary matrix Ui

Ui =
(

cos(θi/2) − sin(θi/2)e−iφi

sin(θi/2)eiφi cos(θi/2)

)
(6.54)

which has the relation
U+

i (Ωi · σ)Ui = σz. (6.55)

It is now claimed that the rotation of the Schwinger boson spinor ψi = (bi1bi2)
by ψi → Uiψi yields for the new Schwinger boson operators the average

〈b†i1bi2〉 = 〈b†i2bi1〉 = 0,
1
2
〈b†i1bi1 − b†i2bi2〉 = S. (6.56)
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It also implies that in the rotated basis the classical spin average becomes fer-
romagnetic, 〈Si〉 = Sẑ.

To make the case more concrete, consider a square-lattice antiferromagnetic
for which the classical spin orientation is 〈Si〉 = (−1)iSẑ. The unitary matrix
(6.54) becomes a unit matrix for A sublattice sites and σx for all the B sublattice
sites. Therefore, for B lattice sites, (b1j , b2j) becomes (−b2j , b1j). The pair
amplitude Qij , i ∈ A, j ∈ B becomes b1ib1j + b2ib2j . Of course it doesn’t really
matter what we call the A sublattice, so for every pair of sites 〈ij〉 we have
Aij =

∑2
m=1 bimbjm.

To carry out the mean-field analysis of the transformed Hamiltonian one
writes, similar to Eq. (6.57),

HMF = −1
2

∑

〈ij〉

(
QijAij + QijA

+
ij

)
. (6.57)

with Aij = bi1bj1 + bi2bj2, Qij = 〈Aij〉. We treat the mean-field amplitude as
real and uniform, Qij = Q, and obtain

HMF = −Q

2

∑

〈ij〉

2∑
m=1

[bimbjm] + h.c.

= −Q

4


∑

j∈i

eik·(rj−ri)


 ∑

km

bkmb−km + h.c.

=
∑

k

( b†1k b2k
)
(

0 −Qk

−Qk 0

)(
b1k

b†
2k

)
(6.58)

where Qk = (Q/4)
∑

j∈i eik·(rj−ri). Inclusion of the Lagrange multiplier
∑

i λi(a
†
iai+

b†i bi − 2S) renders the mean-field Hamiltonian

HMF =
∑

k

( b†1k b2k
)
(

λ −Qk

−Qk λ

)(
b1k

b†
2k

)
. (6.59)

One can bring the Hamiltonian to its diagonalized form by the rotation
(

b1k

b†
2k

)
=

(
cosh θk sinh θk

sinh θk cosh θk

)(
γ1k

γ+
2k

)
(6.60)

where the angle θk is fixed by

cosh 2θk =
λ

Ek
, sinh 2θk =

Qk

Ek
, (6.61)

and the eigenenergy Ek is given by

Ek =
√

λ2 −Q2
k. (6.62)

The minus sign in the energy dispersion (6.62) raises concern for what hap-
pens when λ < |Qk|. In fact, this never happens since the moment when λ
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equals min[Qk] is when the bosons begin to condense, and due to the Bose
condensation λ is always fixed to maintain λ = min[Qk].

When boson condensation happens, λ equals Q, and we have

Ek = Q
√

1− (1/4)(cos kx + cos ky)2. (6.63)

In fact, this is identical to the spin wave spectrum obtained using the Holstein-
Primakoff theory, provided we identify Q with JSz, J =exchange energy, S=spin,
z=coordination number. And this is no coincidence. One will find that the same
Schwinger boson calculation on the triangular lattice, at the onset of Bose con-
densation, also has an energy spectrum of the spin waves on the triangular
lattice. Schwinger boson theory has the power to capture the physics of both
the ordered and the disordered phases of the continuous magnet.

To complete the analysis, the self-consistency relation for Q is derived as

Q =
1
4

∑

i

(6.64)

6.3.3 Spiral ferromagnet

6.3.4 Multiple spiral ferromagnet

6.4 Slave boson

In a strong correlation environment there often arises a situation for which each
site has a low probability of being occupied by two electrons at once, because of
the high energy cost of on-site Coulomb repulsion. Because of this it is useful to
formulate the theory using the Hilbert space in which the doubly occupied state
is truncated out from the outset. In such a limited Hilbert space consisting of
empty (|0〉), or singly occupied (|σ〉) site, the electron commutation is modified
in an odd way. See for example,

{cσ, c+
σ } = |0〉〈σ|σ〉〈0|+ |σ〉〈0|0〉〈σ| = |0〉〈0|+ |σ〉〈σ|. (6.65)

Normally this should have been one, but due to the limitations of the Hilbert
space, the electron creation operator can only connect an empty state to a
singly occupied state, but not a singly occupied state to a doubly occupied
state. Besides, the result (6.65) equals 1− |σ〉〈σ| because we have

|0〉〈0|+
∑

σ

|σ〉〈σ| = 1, (6.66)

also due to the limited Hilbert space imposed by the no double occupancy
constraint. Using a similar idea, we can derive

{cσ, c+
σ } = 1− c+

σ cσ

{cσ, c+
σ } = c+

σ cσ. (6.67)

On the other hand, commutation relation with the density operator n =
∑

σ |σ〉〈σ|
is the same.



6.5. SLAVE-FERMION SCHWINGER BOSON 47

[n, c+
σ ] = c+

σ , [n, cσ] = −cσ. (6.68)

The slave-boson approach re-write the electron operator in this restricted
Hilbert space as a product of a boson (bi) and a fermion (fiσ) operator

cσ = b†fσ. (6.69)

Quite remarkably, this prescription recovers all the commutations of the re-
stricted Hilbert space, (6.67)-(6.68), provided we impose the constraint

b†b +
∑

σ

f+
σ fσ = 1. (6.70)

In this representation, the electron number operator becomes

c+
σ cσ = bb†f+

σ fσ = (1 + b†b)f+
σ fσ = (2−

∑
σ

f+
σ fσ)f+

σ fσ = f+
σ fσ. (6.71)

Similarly one can show that the spin operator has the expression

S =
1
2
c+
α σαβcβ =

1
2
f+

α σαβfβ . (6.72)

6.5 Slave-fermion Schwinger boson

The Schwinger boson formalism introduced in the previous section gave a good
way to handle the spin dynamics, especially in the incoherent regime before the
magnetic long-range order has taken place.

A system where all the dynamics arise from that of the spins is by definition
an insulator. On the other hand, a metallic state allows the motion of individual
electrons from one site to the next, and this requires the introduction of an
electron operator ciσ in addition to the spin operator Si in the Hamiltonian.
The Schwinger boson theory by itself does not tell us how one can write down
the electron operator in terms of the Schwinger bosons. To do that, one must
introduce yet another kind of operator, called the slave-fermion operator denoted
fi. Using this operator, an electron operator gets written as

cσ = f+bσ. (6.73)

Compared to the slave-boson substitution, here the role of boson and fermion is
simply reversed. The advantage is that now one obtains an easy generalization
of the Schwinger boson theory to treat the conducting electrons. Similar to the
slave-boson case, we have

c+
σ cσ = b†σbσ

c+
α σαβcβ = b†ασαβbβ (6.74)

The latter equation is precisely the Schwinger boson prescription.
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Chapter 7

t-J Model

The “standard model” for the high-Tc cuprates is the t-J model. A popular
method used in the solution of the t-J model is first to introduce the slave
boson coordinates to rewrite the Hamiltonian, and apply mean-field theory.
Other, more sophisticated techniques exist, e.g. DMRG, exact diagonalization,
QMC, etc, which I do not talk about here. While the mean-field theory is the
least convincing of all the techniques, it is the most versatile and can be applied
to all sorts of problems involving t-J Hamiltonian.

The t-J model is defined by the Hamiltonian

H = −t
∑

〈ij〉
(c†jαciα+ h.c.) + J

∑

〈ij〉
(Si · Sj− 1

4
ninj) +

Vc

2

∑

i 6=j

1
rij

(ni − n̄)(nj − n̄),

(7.1)

with typically the Coulomb term Vc set to zero. Each site i is roughly like an
atomic orbital, whose wavefunction hybridizes with its neighbors’ to produce
itinerancy. Because of the large Coulomb energy of putting two electrons in a
given atomic orbital (a few eV), it is usually believed that double occupation of
orbitals never happens.

A naive diagonalization of the above Hamiltonian would naturally involve
states which have two electrons at a given site, | ↑↓〉i, which should cost very
high energy. In the t-J model this energy is treated as infinity, and the diago-
nalization takes place within the restricted Hilbert space consisting of an empty
site, and single occupied sites of either spin orientation. This sort of prob-
lem was confronted sometime in early 80’s by using the so-called slave-boson,
or auxiliary-boson technique. In a nutshell, one writes an electron operator
as a composite of a boson operator bi and another fermion operator fiσ as
ciσ = b†ifiσ. In this new choice of variables, the no-double-occupancy constraint
becomes

b†i bi +
∑

σ

f†iσfiσ = 1 (7.2)

for all i. In loose terms it means that the occupation of a given orbital by a
vacancy (b†i bi) or by a single spin (f†iσfiσ) should always add up to one. Double
occupancy is then by definition excluded because

∑
σ f†iσfiσ = 1− b†i bi ≤ 1.

49
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In the path-integral picture the constraint is implemented through the La-
grange multiplier technique, which amounts to adding to the original Lagrangian
the term

LtJ → LtJ + i
∑

i

(b†i bi + f†i fi − 1). (7.3)

The Hamiltonian can be accordingly rewritten as

H = −t
∑

〈ij〉
(bjb

†
if
†
jαfiα+ h.c.) + J

∑

〈ij〉
(Si · Sj− 1

4
ninj)

+
Vc

2

∑

i 6=j

1
rij

(ni−n̄)(nj − n̄)+
∑

i

λi(b
†
i bi+f†iσfiσ − 1)−µ(

∑

iσ

f†iσfiσ−Ne).

(7.4)

The Lagrange multipliers appear as λi and the chemical potential µ is adjusted
so as to obtain the desired total electron number Ne. The spin-spin interaction
term can be written using the fermion coordinates,

Si =
1
2
f†iασαβ

i fiβ . (7.5)

In other words,

2Six = f†i↑fi↓ + f†i↓fi↑

2Siy = −i(f†i↑fi↓ − f†i↓fi↑)

2Siz = f†i↑fi↑ − f†i↓fi↓. (7.6)

This fermion representation of spin satisfies all the commutator algebra of the
original spin. By substituting Eq. (6) back into Eq. (5) one completes the
expression of the t-J model in terms of slave-boson coordinates bi and fiσ.

It is horribly difficult to solve a Hamiltonian which contains a quartic inter-
action term. The J-term is quartic in the fermions, and the t-term is quartic
because it contains two bi’s and two fiσ’s. One can reduce the problem to the
fermion-only problem by treating the boson fields bi as condensed, and satisfying
the constraint

〈b†i bi〉 = 1− 〈f†iσfiσ〉. (7.7)

In reality one replaces the boson fields in the Hamiltonian by a complex number
whose magnitude is determined from |bi|2 = 1 − 〈f†iσfiσ〉. Because the Hamil-
tonian is invariant under a local phase change bi → eiθibi, fiσ → eıθifiσ, one can
always choose bi to be real and positive without loss of generality.

The density-density interaction term can be rewritten as

Vc

2

∑

i 6=j

1
rij

(b2
i − x)(b2

j − x), (7.8)

with b2
i given as one minus the local electron density.
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Having removed the boson degrees of freedom, one can now face the quartic
interaction term by mean-field decoupling technique. One groups the quartic
term as a product of two bilinear operators, and replace one of them by its
expectation values. There are three distinct ways to pair up the fields, hence
three different order parameters in the meanfield theory. Keeping track of the
Fock and pairing terms in the mean-field decoupling scheme gives

Si · Sj → −3
8
(∆

s

ijP
s
ij + χs

ijH
s
ij) +

1
8
(∆

t

ijP
t
ij + χt

ijH
t
ij)

1
4
ninj → 1

8
(∆

s

ijP
s
ij − χs

ijH
s
ij) +

1
8
(∆

t

ijP
t
ij − χt

ijH
t
ij)

(7.9)

plus their hermitian conjugates. The singlet/triplet operators are defined by

P
s/t
ij = fi1fj2 ∓ fi2fj1,

H
s/t
ij = f†j1fi1 ± f†j2fi2, (7.10)

and their expectation values by

∆s/t
ij = 〈P s/t

ij 〉, χ
s/t
ij = 〈Hs/t

ij 〉. (7.11)

In actual treatments, the triplet components are assumed to be zero. When I
didn’t know better, I decoupled the Si · Sj fully in all three channels, but did
the Hartree decoupling only with respect to the − 1

4ninj in the J-term1. As a
result what I had for the mean-field Hamiltonian is

HMF = −t
∑

〈ij〉
(bjbif

†
jαfiα+ h.c.)− 3J

8

∑

〈ij〉
(∆ijP

†
ij + χijH

†
ij + h.c.)

+
J

4

∑

i

Miσiz − J

4

∑

〈ij〉
(1− b2

i )(1− b2
j )

+
Vc

2

∑

i 6=j

1
rij

(b2
i − x)(b2

j − x) +
∑

i

λi(b2
i + f†iσfiσ − 1)− µ

∑

i

f†iσfiσ,

(7.12)

where Pij = P s
ij , and Hij = Hs

ij and ∆ij = ∆s
ij ,Kij = Ks

ij , respectively. σiz is
the Pauli matrix for the local magnetic moment whose axis is chosen in the z-
direction, and Mi is the local magnetic field generated by the neighbouring spins,
Mi =

∑
j〈σjz〉 (j=four nearest neighbours of i). Summation of the spin index

σ is implicitly assumed. One can also find treatments where coefficients are J/2
for the pairing term, and J/4 for the hopping term, because they decoupled
ninj according to Eq. (7.9). We will distinguish them as scheme I (sI) and
scheme II (sII). The maximal gap value will be equal to 4× (3J/8)|∆ij | (sI), or
to 4× (4J/8)|∆ij | (sII).

1Also other people decoupled it this way in order to preserve the SU(2) symmetry which
came from the Heisenberg model.
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The fermion part of the Hamiltonian is expressed in the Nambu form by
introducing the two spinors

ψi↑ =
(

fi↑
f+

i↓

)
, ψi↓ =

(
fi↓
−f+

i↑

)
, (7.13)

and the matrices

Tij =
( −χ∗ij − (8t/3J)bibj ∆ij

∆∗
ij χij + (8t/3J)bibj

)
,

Miσ =
(

λi + σmi 0
0 −λi + σmi

)
, (7.14)

as

HMF =
3
8
J

∑

〈ij〉σ
ψ+

jσTijψiσ +
1
2

∑

iσ

ψ+
iσMiσψiσ

=
3
16

J
∑

iσ

∑

j∈i

ψ+
jσTijψiσ +

1
2

∑

iσ

ψ+
iσMiσψiσ. (7.15)

For actual calculation it is easier if we re-arrange the ψjσ to appear on the right:

HMF =
3
16

J
∑

iσ

∑

j∈i

ψ+
iσTjiψjσ +

1
2

∑

iσ

ψ+
iσMiσψiσ,

Tji =
( −χij − (8t/3J)bibj ∆ij

∆∗
ij χ∗ij + (8t/3J)bibj

)
.

(7.16)

From now on we will write χ′ij = χij + (8t/3J)bibj .
The above fermion Hamiltonian can be diagonalized by an appropriate Bo-

goliubov rotation of the operators. We will first work out the case without
magnetism, so that Miσ = Mi = λiσz. The spinors are rotated according to the
Bogoliubov matrix (1=spin up, 2=spin down)

ψiσ =
∑

n

(
uni −v∗ni

vni u∗ni

)
Γnσ,

Γn1 =
(

γi1

γ+
i2

)
, Γi2 =

(
γi2

−γ+
i1

)
. (7.17)

Provided the eigenfunctions (uni, vni) obey the equation (taking J ≡ 1)

−3
8
χ′ijunj +

3
8
∆ijvnj + λiuni = Enuni

3
8
∆̄ijunj +

3
8
χ̄′ijvnj − λivni = Envni, (7.18)

we will have
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∑

j∈i

Tji

(
unj −v∗nj

vnj u∗nj

)
= En

(
uni v∗ni

vni −u∗ni

)

∑

i

∑

j∈i

(
u∗ni v∗ni

−vni uni

)
Tji

(
unj −v∗nj

vnj u∗nj

)
= Enσz,

(7.19)

and the mean field Hamiltonian in diagonal form

HMF =
3
16

∑
n

EnΓ+
nσσzΓnσ =

3
8

∑
nσ

Enγ+
nσγnσ. (7.20)

Self-consistent parameters are calculated according to the formulae (F (x) ≡
1/(exp(x/T ) + 1)):

χij = 〈
∑

σ

f+
jσfiσ〉 =

∑
n

(
uniu

∗
njF (En) + v∗nivnjF (−En)

)

∆ij = 〈εαβfiαfjβ〉 =
∑

n

(
univ

∗
njF (−En)− v∗niunjF (En)

)

ni = 〈
∑

σ

f†iσfiσ〉 =
∑

n

(
|uni|2F (En) + |vni|2F (−En)

)
.

(7.21)

The sum
∑

n runs over both positive and negative energy sets. The usual
identity that (uni, vni) of energy −E is equal to (−v∗ni, u

∗
ni) at energy +E still

holds and allows the self-consistency equations to simplify to

χij = 2
∑

n

uniu
∗
njF (En)

∆ij = −2
∑

n

v∗niunjF (En)

ni = 2
∑

n

|uni|2F (En). (7.22)

Now we put the magnetism back in and see how to diagonalize the mean field
Hamiltonian. We try a slightly different Bogoliubov rotation than the previous
case,

fi1 =
∑

n

(uniγn1 − y∗niγ
+
n2), fi2 =

∑
n

(xniγn2 + v∗niγ
+
n1),

ψi1 =
∑

n

(
uni −y∗ni

vni x∗ni

)
Γn1, ψi2 =

∑
n

(
xni −v∗ni

yni u∗ni

)
Γn2. (7.23)

This time the correct equations to be satisfied by (uni, vni) are
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−3
8
χ′ijunj +

3
8
∆ijvnj + (mi + λi)uni = Enuni

3
8
∆̄ijunj +

3
8
χ̄′ijvnj + (mi − λi)vni = Envni

(7.24)

with χ′ij ≡ χij + (8t/3)bibj (sI), or

−2
8
χ′ijunj +

4
8
∆ijvnj + (mi + λi)uni = Enuni

4
8
∆̄ijunj +

2
8
χ̄′ijvnj + (mi − λi)vni = Envni

(7.25)

with χ′ij ≡ χij + (8t/2)bibj (sII). Eigenfunctions (xni, yni) are determined from
the same equation with mi → −mi. Alternatively one can obtain (xni, yni) of
energy E as (v̄ni,−ūni) where (uni, vni) is an eigenstate of energy −E. This
statement holds for arbitrary magnetic states: ferromagnetic, antiferromagnetic,
and what not.

Self-consistency equation after considering the relation between (xni, yni)
and (uni, vni) becomes Eq. (7.21) without it being reducible to Eq. (7.22).
Additional relation for local magnetic moment is obtained

Mi = 〈
∑

σ

σf†iσfiσ〉 =
∑

n

(
|uni|2F (En)− |vni|2F (−En)

)
. (7.26)

Specializing to uniform case: We think of a uniform situation where each
eigenstate n is associated with a momentum vector k and one can write uni =∑

k eik·riuk, vni =
∑

k eik·rivk. For the square lattice one has

χi,i+x̂ = χ∗i+x̂,i = χx, χi,i+ŷ = χ∗i+ŷ,i = χy,

∆i,i+x̂ = ∆i+x̂,i = ∆x, ∆i,i+ŷ = ∆i+ŷ,i = ∆y

(7.27)

with four complex parameters (χx, χy,∆x,∆y). If the local magnetic moment
mi is staggered, a unit cell would have to be doubled. When we consider a
uniform magnetization due to, say, a strong external magnetic field, one can take
mi = m and the BdG equation in momentum space reduces to (χ′x = χx+8tδ/3,
etc.)

−3
8
[χ′xeikx +χ′xe−ikx + χ′yeiky +χ′ye−iky ]uk+

3
4
[∆x cos kx+∆y cos ky]vk+(m+λ)uk =Ekuk

3
4
[∆x cos kx+∆y cos ky]uk+

3
8
[χ′xe−ikx +χ′xeikx +χ′ye−iky +χ′yeiky ]vk+(m− λ)vk =Ekvk.

(7.28)

With the definitions
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Ak =
3
8
[χ′xeikx + χ′xe−ikx + χ′yeiky + χ′ye−iky ], Bk =

3
4
[∆x cos kx + ∆y cos ky],

(7.29)

I can reduce it to a simple-looking form
( −Ak + λ Bk

B∗
k A−k − λ

)(
uk

vk

)
= (Ek −m)

(
uk

vk

)
. (7.30)

Presumably it is OK to take χij to be real in this case, so that Ak = (3/4)[χ′x cos kx+
χ′y cos ky] = A−k. The eigenenergies follow as Ek = m±εk, εk =

√
(λ−Ak)2 + |Bk|2.

The average quantities are

χx =
∑

Ek

(
|uk|2e−ikxF (Ek) + |vk|2eikxF (−Ek)

)

χy =
∑

Ek

(
|uk|2e−ikyF (Ek) + |vk|2eikyF (−Ek)

)

∆x =
∑

Ek

ukv∗k
(
e−ikxF (−Ek)− eikxF (Ek)

)

∆y =
∑

Ek

ukv∗k
(
e−ikyF (−Ek)− eikyF (Ek)

)

n =
∑

Ek

(
|uk|2F (Ek) + |vk|2F (−Ek)

)
.

(7.31)

For the positive energy branch, Ek = m + εk, we obtain

|uk|2 =
1
2

(
1 +

λ−Ak

εk

)
, |vk|2 =

1
2

(
1− λ−Ak

εk

)
, ukv∗k =

1
2

Bk

εk
. (7.32)

For the negative energy branch, Ek = m− εk, we obtain

|uk|2 =
1
2

(
1− λ−Ak

εk

)
, |vk|2 =

1
2

(
1 +

λ−Ak

εk

)
, ukv∗k = −1

2
Bk

εk
. (7.33)
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Chapter 8

Exact Spin Hamiltonians

8.1 AKLT States

The AKLT (Affleck, Kennedy, Lieb, Tasaki) Hamiltonian is given by

HAKLT =
∑

〈ij〉
P2S(ij), (8.1)

where P2S projects the spin operators Jij = Si +Sj for nearest-neighbor pair of
adjacent spins 〈ij〉 onto a subspace of magnitude 2S. There are two constraints
on the spin operators in writing down the AKLT states,

1. S2
i = S(S + 1) for any spin Si.

2. The value of S must satisfy z = 2S, where z is the coordination number.

The projection operator is given by

P2S(ij) =
J2

ij

2S(2S + 1)
× J2

ij − 1 · 2
2S(2S + 1)− 1 · 2 × · · · ×

J2
ij − (2S − 1) · 2S

2S(2S + 1)− 2S(2S − 1)
.(8.2)

Any pair of spins with a net spin less than 2S is projected out, i.e. P2S(ij)|J <
2S〉 = 0. For J = 2S, which is the maximal value attainable for the sum of two
spin-S operators, we get P2S(ij)|2S〉 = |2S〉. For S = 1,

P2(ij) =
J2

ij(J
2
ij − 2)

2 · 3 · 4 =
1
24

J2
ij(J

2
ij − 2) (8.3)

and since J2
ij = (Si + Sj)2 = 2S(S + 1) + 2Si · Sj ,

P2(ij) = Si · Sj +
1
3
(Si · Sj)2 +

2
3

. (8.4)

Hence the AKLT Hamiltonian for a one-dimensional spin-1 chain is written as

HAKLT =
∑

〈ij〉

[
Si · Sj +

1
3
(Si · Sj)2

]
. (8.5)

57
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A similar reasoning leads to the AKLT Hamiltonian in two dimensional square
and triangular lattices. For a two-dimensional square lattice with spin-2 the
Hamiltonian is

HAKLT
¤ =

∑

〈ij〉
(Si · Sj)(Si · Sj + 3)(Si · Sj + 5)(Si · Sj + 6) (8.6)

The Hamiltonian of a two-dimensional triangular lattice with spin-3 is

HAKLT
4 =

∑

〈ij〉
(Si · Sj + 12)(Si · Sj + 11)(Si · Sj + 9)×

(Si · Sj + 6)(Si · Sj + 2)(Si · Sj − 3) (8.7)

By construction, the AKLT Hamiltonian is positive semi-definite and therefore
the ground state can be at most the zero energy eigenstate. Such a state can
be constructed in the Schwinger boson representation as

|AKLT〉 =
∏

〈ij〉
(a†i b

†
j − b†ia

†
j)|0〉 . (8.8)

Each 〈ij〉 bond is covered by a dimer, a spin singlet, made up of two spin-1/2
constituents. The AKLT state has, for each 〈ij〉 bond, a maximum Jij,z value of
2S−1. Then we must have J of that bond less than 2S, and P2S(ij)|AKLT〉 = 0.
To see that Jij,z does not exceed 2S−1, we take the square lattice as an example.

From Eq. (8.8), it is clear that a†i b
†
j − b†ia

†
j for the 〈ij〉 bond gives Jij,z = 0.

According to Fig. ??, bonds 〈i2〉, 〈i3〉, and 〈i4〉 contribute a†i b
†
2, a†i b

†
3, and a†i b

†
4,

respectively and bonds 〈j5〉, 〈j6〉, and 〈j7〉 contribute a†jb
†
5, a†jb

†
6, and a†jb

†
7,

respectively. We have up to six up S = 1/2 spins or (a†i )
3(a†j)

3 for the 〈ij〉 bonds.
So Jmax

ij,z = 3 = 2(z − 1) · 1
2 = z − 1 = 2S − 1. Since the wavefunction does not

possess any J = 2S component for 〈ij〉 bonds, one must have J2
2S(ij)|AKLT〉 =

0.

8.2 Majumdar-Ghosh states

The Majumdar-Ghosh (MG) model offers an exactly solvable model of spin-1/2
chains.

HMG =
4J

3

N∑

i=1

(Si · Si+1 +
1
2
Si · Si+2) +

NJ

2
, SN+1 = S1 . (8.9)

HMG possesses two degenerate ground states one of which is given by

|MG〉 =
N/2∏

i=1

1√
2

(
(a†2i−1b

†
2i − b†2i−1a

†
2i

)
|0〉, (8.10)

and the other is a translation of this state by one lattice unit. The proof is as
follows: construct the total spin operator for a triad of adjacent spins,

Ji = Si−1 + Si + Si+1

J2
i = J(J + 1), J =

1
2
,

3
2

. (8.11)
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Since one is adding up three S = 1/2 operators, the Hilbert space for the triad
of spins must be decomposed into either J = 3/2 or J = 1/2 sectors. The
appropriate projection operator is constructed as

1
3

(
J2

i −
3
4

)
≡ P3/2(i− 1, i, i + 1) . (8.12)

If {Si−1, Si, Si+1} form a J = 1/2 state, then P3/2(i−1, i, i+1) |J = 1/2〉 = 0,
but if J = 3/2 then P3/2(i − 1, i, i + 1) |J = 3/2〉 = |J = 3/2〉. HMG is a sum
of projectors, HMG = J

∑
i P3/2(i− 1, i, i + 1). Due to the preceding argument

about the allowed values of J , each average 〈P3/2(i− 1, i, i + 1)〉 must be non-
negative, and we can anticipate that the zero-energy state, if it exists, is the
ground state.

Expanding

P3/2(i− 1, i, i + 1) =
1
3

[
(Si−1 + Si + Si+1)2 − 3

4

]

=
1
3

[
3
2

+ 2(Si−1 · Si + Si · Si+1 + Si−1 · Si+1)
]

=
1
2

+
2
3
(Si−1 · Si + Si · Si+1 + Si−1 · Si+1) . (8.13)

Hence,

HMG = J
N∑

i=1

P3/2(i− 1, i, i + 1) =
NJ

2
+

4
3
J

∑

i

(
Si · Si+1 +

1
2

∑

i

Si · Si+2

)
.

(8.14)

Two of the three sites in the |MG〉 states are already bound into a singlet. The
portion of the wave function featuring the three sites i − 1, i, i + 1 are linear
combinations of

(a†i−1b
†
i − b†i−1a

†
i )a

†
i+1 & (a†i−1b

†
i − b†i−1a

†
i )b

†
i+1. (8.15)

The singlet combination (a†i−1b
†
i − b†i−1a

†
i ) remains invariant under an arbitrary

SU(2) rotation of spins, and a†i+1 and b†i+1 rotates into linear combinations of
each other. So, no matter what the basis to write down the Schwinger bosons,
one always finds Jz = 1/2 for the triad, and thus J = 1/2. If no triad possesses
J = 3/2 component, P3/2(i − 1, i, i + 1) |d〉± = 0 for all i, so HMG |d〉± = 0.
Since HMG is a sum of positive semi-definite operators, the zero-energy eigen
state is the ground state. The spin-spin correlation for |MG〉 is

〈Si · Sj〉 =





3/4, i = j
−3/4, |i− j| = 1

0, |i− j| > 1
(8.16)


